The role of B lymphocytes in selected rheumatological and neurological diseases
DOI:
https://doi.org/10.12775/JEHS.2023.38.01.003Keywords
B lymphocytes, rheumatic diseases, neurological diseases, monoclonal antibodiesAbstract
Introduction: B lymphocytes are responsible for humoral immune response. They play a crucial role in the development of the immune response and are essential in preventing infections as well as autoimmune and neoplastic diseases. They also constitute an important therapeutic target and are used in genetic and immunological therapies. In some cases, B cells can contribute to the pathogenesis of various diseases.
Aim of study: The aim of this study is to summarize the current knowledge on the diverse role of B lymphocytes in selected rheumatic and neurological diseases using available scientific literature.
Materials and Methods: This review was conducted using Pubmed and Google Scholar databases from 2009-2023. The research strategy was based on the following terms: B lymphocytes, monoclonal antibodies, myasthenia gravis, multiple sclerosis, systemic lupus erythematosus, systemic sclerosis, central nervous system damage, optic neuritis, Devic's syndrome.
Conclusion: B lymphocytes play a significant role in the pathogenesis of many rheumatic and neurological diseases, therefore they represent a target for modern therapies. Their role and potential use are complex and differ depending on the specific disease entity. Further research will allow for the development of new targeted therapies, giving hope for improving the effectiveness of patient treatment.
References
Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T. Immunologia. Warszawa, PWN 2009; 172–173, 221, 259–269.
LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008 Sep 1;112(5):1570-80. doi: 10.1182/blood-2008-02-078071. PMID: 18725575; PMCID: PMC2518873.
Blüml S, McKeever K, Ettinger R, Smolen J, Herbst R. B-cell targeted therapeutics in clinical development. Arthritis Res Ther. 2013;15 Suppl 1(Suppl 1):S4. doi: 10.1186/ar3906. Epub 2013 Apr 4. PMID: 23566679; PMCID: PMC3624127.
Yang J, Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature. 2010 Sep 23;467(7314):465-9. doi: 10.1038/nature09357. Epub 2010 Sep 5. PMID: 20818374.
Wang T, Li Z, Li X, Chen L, Zhao H, Jiang C, Song L, Expression of CD19+CD24highCD38high B cells, IL‑10 and IL‑10R in peripheral blood from patients with systemic lupus erythematosus, Molecular Medicine Reports 16.5, 2017 Nov, 16(5): 6326-6333, https://doi.org/10.3892/mmr.2017.7381.
Cooper GS, Gilbert KM, Greidinger EL, et al. Recent advances and opportunities in research on lupus: environmental influences and mechanisms of disease. Environ Health Perspect. 2008; 116(6): 695–702, doi: 10.1289/ehp.11092, indexed in Pubmed: 18560522.
Menon M, Blair PA, Isenberg DA, Mauri C. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus. Immunity. 2016 Mar 15;44(3):683-697. doi: 10.1016/j.immuni.2016.02.012. Epub 2016 Mar 8. PMID: 26968426; PMCID: PMC4803914.
Rianthavorn P, Chokedeemeeboon C, Deekajorndech T, Suphapeetiporn K. Interleukin-10 promoter polymorphisms and expression in Thai children with juvenile systemic lupus erythematosus. Lupus. 2013 Jun;22(7):721-6. doi: 10.1177/0961203313486192. Epub 2013 May 2. PMID: 23640982.
Yanaba K, Bouaziz J-D, Matsushita T, Magro CM, Clair EWSt, Tedder TF, B-lymphocyte contributions to human autoimmune disease. Immunological Reviews. 2008;223(1):284–299. doi: 10.1111/j.1600-065x.2008.00646.x.
Wang T, Mei Y, Li Z. Research Progress on Regulatory B Cells in Systemic Lupus Erythematosus. Biomed Res Int. 2019 May 22;2019:7948687. doi: 10.1155/2019/7948687. PMID: 31240224; PMCID: PMC6556307.
Yoshizaki A, Fukasawa T, Ebata S, Yoshizaki-Ogawa A, Sato S, Involvement of B cells in the development of systemic sclerosis, Front. Immunol., 2022 July; 13: 1-10, doi: 10.3389/fimmu.2022.938785, PMID: 35967355.
Tsuchiya N, Kuroki K, Fujimoto M, Murakami Y, Tedder TF, Tokunaga K, et al.. Association of a functional CD19 polymorphism with susceptibility to systemic sclerosis. Arthritis Rheum,2004 August; 50:4002–7. doi: 10.1002/art.20674, PMID: 15593213.
Thoreau B, Chaigne B, Mouthon L, Role of B-Cell in the Pathogenesis of Systemic Sclerosis. Front. Immunol., 2022 July; 13:933468, doi: 10.3389/fimmu.2022.933468.
Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI, et al.. Regulatory b cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature, 2012;491:264–8. doi: 10.1038/nature11501, PMID: 23064231.
Ebata S, Yoshizaki A, Oba K, Kashiwabara K, Ueda K, Uemura Y, et al.. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol; 2021; 3:e489–97. doi: 10.1016/S2665-9913(21)00107-7.
Sieb JP. Myasthenia gravis: an update for the clinician. Clin Exp Immunol. 2014 Mar;175(3):408-18. doi: 10.1111/cei.12217. PMID: 24117026; PMCID: PMC3927901.
Pallaver F, Riviera AP, Piffer S, Ricciardi R, Roni R, Orrico D, Bonifati DM. Change in myasthenia gravis epidemiology in Trento, Italy, after twenty years. Neuroepidemiology. 2011;36(4):282-7. doi: 10.1159/000328863. Epub 2011 Jul 12. PMID: 21757957.
Hehir MK, Silvestri NJ. Generalized Myasthenia Gravis: Classification, Clinical Presentation, Natural History, and Epidemiology. Neurol Clin. 2018 May;36(2):253-260. doi: 10.1016/j.ncl.2018.01.002. PMID: 29655448.
Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015 Oct;14(10):1023-36. doi: 10.1016/S1474-4422(15)00145-3. PMID: 26376969.
Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O'Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018 Feb;57(2):172-184. doi: 10.1002/mus.25973. Epub 2017 Sep 30. PMID: 28940642; PMCID: PMC5767142.
Yi JS, Russo MA, Massey JM, Juel V, Hobson-Webb LD, Gable K, Raja SM, Balderson K, Weinhold KJ, Guptill JT. B10 Cell Frequencies and Suppressive Capacity in Myasthenia Gravis Are Associated with Disease Severity. Front Neurol. 2017 Feb 10;8:34. doi: 10.3389/fneur.2017.00034. PMID: 28239367; PMCID: PMC5301008.
Sun F, Ladha SS, Yang L, Liu Q, Shi SX, Su N, Bomprezzi R, Shi FD. Interleukin-10 producing-B cells and their association with responsiveness to rituximab in myasthenia gravis. Muscle Nerve. 2014 Apr;49(4):487-94. doi: 10.1002/mus.23951. Epub 2014 Feb 27. PMID: 23868194.
Potemkowski A. „Stwardnienie rozsiane w świecie i w Polsce – ocena epidemiologiczna”. Aktualności Neurologiczne 2, nr 9 (2009): 91–97.
Kamińska J, Koper OM, Piechal K, Kemona H. „Multiple sclerosis - etiology and diagnostic potential”. Postępy Higieny i Medycyny Doświadczalnej 71, nr 1 (30 czerwiec 2017): 551-563
Losy J, Bartosik-Psujek H, Członkowska A, Kurowska K, Maciejek Z, Mirowska-Guzel D, Potemkowski A, Ryglewicz D, Stępień A. Leczenie stwardnienia rozsianego. Zalecenia Polskiego Towarzystwa Neurologicznego. Polski Przegląd Neurologiczny 12, nr 2 (2016): 80–95.
Rejdak K. Patogeneza stwardnienia rozsianego. Aktualności Neurologiczne 2009 9 (2), p. 86-90
Zawada M. Potential pathogens in multiple sclerosis (MS). Postępy Higieny i Medycyny Doświadczalnej 66 (22 październik 2012): 758–70.
Wójta-Kempa M, Wolska-Zogata I. Zdrowie kobiet. Ujęcie interdyscyplinarne pod redakcją Moniki Wójty-Kempy i Ireny Wolskiej-Zogaty, 2022.
Bartosik-Psujek H. Current model of immunopathogenesis of multiple sclerosis - New therapeutic options. Aktualności Neurologiczne 14 (30 lipiec 2014): 117–23.
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L; OPERA I and OPERA II Clinical Investigators. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017 Jan 19;376(3):221-234. doi: 10.1056/NEJMoa1601277. Epub 2016 Dec 21. PMID: 28002679.
Mulero P, Midaglia L, Montalban X. Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord. 2018 May 10;11:1756286418773025. doi: 10.1177/1756286418773025. PMID: 29774057; PMCID: PMC5952271.
Holroyd KB, Manzano GS, Levy M. Update on neuromyelitis optica spectrum disorder. Current Opinion in Ophthalmology. 2020 Nov. doi:10.1097/icu.0000000000000703. PMID: 33009077; PMCID: PMC7771018.
Jarius S, Paul F, Weinshenker BG, et al. Neuromyelitis optica. Nature Reviews Disease Primers, 6(1). 2022 Oct 22. doi:10.1038/s41572-020-0214-9. PMID: 33093467.
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013 Oct, 93(4):1543-62. doi: 10.1152/physrev.00011.2013. PMID: 24137016; PMCID: PMC3858210.
Krumbholz M, Meinl E. B cells in MS and NMO: pathogenesis and therapy. Seminars in Immunopathology. 2014 May 16, 36(3), 339–350. doi:10.1007/s00281-014-0424-x.
Chihara N, Aranami T, Oki S, et al. Plasmablasts as Migratory IgG-Producing Cells in the Pathogenesis of Neuromyelitis Optica. PLoS ONE. 2013, 8(12), e83036. doi:10.1371/journal.pone.0083036. PMID: 24340077; PMCID: PMC3858367.
Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proceedings of the National Academy of Sciences. 2011 Feb 14, 108(9), 3701–3706. doi:10.1073/pnas.1017385108. PMID: 21321193; PMCID: PMC3048150.
Bennett JL, O’Connor KC, Bar-Or A, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015 May 7, 2(3):e104. doi: 10.1212/NXI.0000000000000104. PMID: 25977932; PMCID: PMC4426682.
Berchtold D, Weitbrecht L, Meisel C, et al. Friend or foe? – B cells in stroke. Neuroforum, 2019; 0(0). doi:10.1515/nf-2018-0031.
Doyle KP, Quach LN, Sole M, et al. B-Lymphocyte-Mediated Delayed Cognitive Impairment following Stroke. Journal of Neuroscience, 2015; 35(5), 2133–2145. doi:10.1523/jneurosci.4098-14.2015. PMID: 25653369; PMCID: PMC4315838.
Ortega SB, Noorbhai I, Poinsatte K, et al. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov Med. 2015 May;19(106):381-92. PMID: 26105701; PMCID: PMC4692161.
Malone MK, Ujas TA, Britsch DRS, et al. The immunopathology of B lymphocytes during stroke-induced injury and repair. Semin Immunopathol 2022. https://doi.org/10.1007/s00281-022-00971-3.
Seifert HA, Vandenbark AA, Offner H. Regulatory B cells in experimental stroke. Immunology. 2018 Jun;154(2):169-177. doi: 10.1111/imm.12887. Epub 2018 Feb 5. PMID: 29313944; PMCID: PMC5980178.
Ankeny DP, Popovich PG. B cells and autoantibodies: complex roles in CNS injury. Trends Immunol. 2010 Sep;31(9):332-8. doi: 10.1016/j.it.2010.06.006. Epub 2010 Aug 4.PMID: 20691635; PMCID: PMC2933277.
Ankeny DP, Guan Z, Popovich PG. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest. 2009 Oct;119(10):2990-9. doi: 10.1172/JCI39780. Epub 2009 Sep 21. PMID: 19770513; PMCID: PMC2752085.
Wu B, Matic D, Djogo N, Szpotowicz E, Schachner M, Jakovcevski I. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Exp Neurol. 2012 Oct;237(2):274-85. doi: 10.1016/j.expneurol.2012.07.016. Epub 2012 Jul 31. PMID: 22868200.
Schneider L, Rezaeezade-Roukerd M, Faulkner J, Reichert E, Abou-Al-Shaar H, Flis A, Rubiano AM, Hawryluk GWJ. The human anti-ganglioside GM1 autoantibody response following traumatic and surgical central nervous system insults. Neurosci Res. 2022 Aug;181:105-114. doi: 10.1016/j.neures.2022.03.009. Epub 2022 Apr 8. PMID: 35405180.
Yuan B, Pan S, Zhang WW. Effects of gangliosides on expressions of caspase-3 and NGF in rats with acute spinal cord injury. Eur Rev Med Pharmacol Sci. 2017 Dec;21(24):5843-5849. doi: 10.26355/eurrev_201712_14033. PMID: 29272022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Julia Zarańska, Arkadiusz Aab, Marta Miejska-Kamińska, Filip Kamiński, Adriana Liszka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 699
Number of citations: 0