Comparative analysis of postmortem cerebral ammonia level and Alzheimer type 2 astrocytes with intravital blood laboratory parameters of deceased patients with liver cirrhosis of varying degree
DOI:
https://doi.org/10.12775/JEHS.2023.13.04.041Keywords
liver cirrhosis, hepatic encephalopathy, ammonia, histochemistry, Alzheimer type 2 astrocytes, blood laboratory parametersAbstract
Purpose - correlation analysis of the postmortem ammonia level and numbers of Alzheimer type 2 astrocytes in different parts of the brain with intravital laboratory blood parameters of deceased patients with liver cirrhosis of varying severity.
Material and methods. Autopsied brains of 90 patients with non-alcoholic liver cirrhosis (LC) of class A, B and C according to Child-Pugh formed 3 groups: «A» (n = 30), «B» (n = 30) and «C» (n = 30). Control group - 30 patients deceased from cardiovascular failure. Cortex, white matter, hippocampus, thalamus, striatum and cerebellum were histochemically (HC) studied with Nessler's reagent for ammonia level. Correlation analysis of ammonia expression, Alzheimer type 2 astrocytes (AA2) numbers and 14 intravital laboratory blood parameters was performed.
Results. HC method reveals region-dependent ammonia expression in the brain neuropil. The most significant correlations are observed in thalamus, striatum, cerebellum, and cortex between ammonia expression (ACUOD), AA2-astrocytosis, and lifetime values of total bilirubin (for Bil/ACUOD & /AA2 r = 0.31-0.97), AST (for AST/ACUOD & /AA2 r = 0.30-0.81), ALT (for ALT/ACUOD & /AA2 r = 0.30-0.78), leukocyte index of intoxication (for LII/ACUOD & /AA2 r = 0.34-0.76), albumin (for Alb/ACUOD & /AA2 r = -0.34 to -0.78), leukocytes (for Wbc/ACUOD & /AA2 r = 0.31-0.68), prothrombin index (for PI/ACUOD & /AA2 r = -0.31 to -0.45) and potassium (for K+/ACUOD & /AA2 r = -0.32 to -0.45), p <0.05.
Conclusion. During LC ammonia expression and AA2-astrocytosis in cerebellum, thalamus, striatum and cortex significantly correlate with each other, as well as with indicators of total bilirubin, AST, ALT, albumin, leukocytes, leukocyte index of intoxication, prothrombin index and blood potassium.
References
GBD 2019 Diseases and Injuries Collaborators (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet (London, England), 396(10258), 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9
Bohra, A., Worland, T., Hui, S., Terbah, R., Farrell, A., & Robertson, M. (2020). Prognostic significance of hepatic encephalopathy in patients with cirrhosis treated with current standards of care. World journal of gastroenterology, 26(18), 2221–2231. https://doi.org/10.3748/wjg.v26.i18.2221
Shulyatnikova T. & Shavrin V. (2017). Modern view on hepatic encephalopathy: basic terms and concepts of pathogenesis. Pathologia, 14(3), 371-380 (41). https://doi.org/10.14739/2310-1237.2017.3.118773
Butterworth R. F. (2019). Hepatic Encephalopathy in Cirrhosis: Pathology and Pathophysiology. Drugs, 79(Suppl 1), 17–21. https://doi.org/10.1007/s40265-018-1017-0
Lu K. (2023). Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules, 13(2), 396. https://doi.org/10.3390/biom13020396
Angelova, P. R., Kerbert, A. J. C., Habtesion, A., Hall, A., Abramov, A. Y., & Jalan, R. (2022). Hyperammonaemia induces mitochondrial dysfunction and neuronal cell death. JHEP reports: innovation in hepatology, 4(8), 100510. https://doi.org/10.1016/j.jhepr.2022.100510
Shulyatnikova, T., & Shavrin, V. (2021). Mobilisation and redistribution of multivesicular bodies to the endfeet of reactive astrocytes in acute endogenous toxic encephalopathies. Brain research, 1751, 147174. https://doi.org/10.1016/j.brainres.2020.147174
Jayakumar, A. R., & Norenberg, M. D. (2018). Hyperammonemia in Hepatic Encephalopathy. Journal of clinical and experimental hepatology, 8(3), 272–280. https://doi.org/10.1016/j.jceh.2018.06.007
Gutiérrez-de-Juan, V., López de Davalillo, S., Fernández-Ramos, D., Barbier-Torres, L., Zubiete-Franco, I., Fernández-Tussy, P., Simon, J., Lopitz-Otsoa, F., de Las Heras, J., Iruzubieta, P., Arias-Loste, M. T., Villa, E., Crespo, J., Andrade, R., Lucena, M. I., Varela-Rey, M., Lu, S. C., Mato, J. M., Delgado, T. C., & Martínez-Chantar, M. L. (2017). A morphological method for ammonia detection in liver. PloS one, 12(3), e0173914. https://doi.org/10.1371/journal.pone.0173914
Wan, S. Z., Nie, Y., Zhang, Y., Liu, C., & Zhu, X. (2020). Assessing the Prognostic Performance of the Child-Pugh, Model for End-Stage Liver Disease, and Albumin-Bilirubin Scores in Patients with Decompensated Cirrhosis: A Large Asian Cohort from Gastroenterology Department. Disease markers, 2020, 5193028. https://doi.org/10.1155/2020/5193028
Mehta, R., GP trainee, Chinthapalli, K., & consultant neurologist (2019). Glasgow coma scale explained. BMJ (Clinical research ed.), 365, l1296. https://doi.org/10.1136/bmj.l1296
Vilstrup, H., Amodio, P., Bajaj, J., Cordoba, J., Ferenci, P., Mullen, K. D., Weissenborn, K., & Wong, P. (2014). Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology (Baltimore, Md.), 60(2), 715–735. https://doi.org/10.1002/hep.27210
Deutsch-Link, S., Moon, A. M., Jiang, Y., Barritt, A. S., 4th, & Tapper, E. B. (2022). Serum Ammonia in Cirrhosis: Clinical Impact of Hyperammonemia, Utility of Testing, and National Testing Trends. Clinical therapeutics, 44(3), e45–e57. https://doi.org/10.1016/j.clinthera.2022.01.008
Goldstein, B. N., Wesler, J., Nowacki, A. S., Reineks, E., & Natowicz, M. R. (2017). Investigations of blood ammonia analysis: Test matrices, storage, and stability. Clinical biochemistry, 50(9), 537–539. https://doi.org/10.1016/j.clinbiochem.2017.01.002
Haj, M., & Rockey, D. C. (2020). Ammonia Levels Do Not Guide Clinical Management of Patients with Hepatic Encephalopathy Caused by Cirrhosis. The American journal of gastroenterology, 115(5), 723–728. https://doi.org/10.14309/ajg.0000000000000343
Ninan, J., & Feldman, L. (2017). Ammonia Levels and Hepatic Encephalopathy in Patients with Known Chronic Liver Disease. Journal of hospital medicine, 12(8), 659–661. https://doi.org/10.12788/jhm.2794
Vierling, JM, Mokhtarani, M., Brown, RS, Jr, Mantry, P., Rockey, DC, Ghabril, M., Rowell, R., Jurek, M., Coakley, DF, & Scharschmidt, BF (2016). Fasting Blood Ammonia Predicts Risk and Frequency of Hepatic Encephalopathy Episodes in Patients with Cirrhosis. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association, 14(6), 903–906.e1. https://doi.org/10.1016/j.cgh.2015.11.018
Hu, C., Huang, K., Zhao, L., Zhang, F., Wu, Z., & Li, L. (2020). Serum ammonia is a strong prognostic factor for patients with acute-on-chronic liver failure. Scientific reports, 10(1), 16970. https://doi.org/10.1038/s41598-020-73603-1
Shalimar, Sheikh, M. F., Mookerjee, R. P., Agarwal, B., Acharya, S. K., & Jalan, R. (2019). Prognostic Role of Ammonia in Patients with Cirrhosis. Hepatology (Baltimore, Md.), 70(3), 982–994. https://doi.org/10.1002/hep.30534
Balcar, L., Krawanja, J., Scheiner, B., Paternostro, R., Simbrunner, B., Semmler, G., Jachs, M., Hartl, L., Stättermayer, AF, Schwabl, P., Pinter, M., Szekeres, T., Trauner, M., Reiberger, T., & Mandorfer, M. (2023). Impact of ammonia levels on outcome in clinically stable outpatients with advanced chronic liver disease. JHEP reports: innovation in hepatology, 5(4), 100682. https://doi.org/10.1016/j.jhepr.2023.100682
Trebicka, J., Fernandez, J., Papp, M., Caraceni, P., Laleman, W., Gambino, C., Giovo, I., Uschner, F. E., Jansen, C., Jimenez, C., Mookerjee, R., Gustot, T., Albillos, A., Bañares, R., Jarcuska, P., Steib, C., Reiberger, T., Acevedo, J., Gatti, P., Shawcross, D. L., … PREDICT STUDY group of the EASL-CLIF CONSORTIUM (2021). PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis. Journal of hepatology, 74(5), 1097–1108. https://doi.org/10.1016/j.jhep.2020.11.019
Arroyo, V., Angeli, P., Moreau, R., Jalan, R., Clària, J., Trebicka, J., Fernández, J., Gustot, T., Caraceni, P., Bernardi, M., & investigators from the EASL-CLIF Consortium, Grifols Chair and European Foundation for the Study of Chronic Liver Failure (EF-Clif) (2021). The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. Journal of hepatology, 74(3), 670–685. https://doi.org/10.1016/j.jhep.2020.11.048
Milewski, K., & Oria, M. (2016). What we know: the inflammatory basis of hepatic encephalopathy. Metabolic brain disease, 31(6), 1239–1247. https://doi.org/10.1007/s11011-015-9740-7
Bai, Z., Xu, W., Chai, L., Zheng, X., Méndez-Sánchez, N., Philips, CA, Cheng, G., & Qi, X. (2022). Effects of Short-Term Human Albumin Infusion for the Prevention and Treatment of Hyponatremia in Patients with Liver Cirrhosis. Journal of clinical medicine, 12(1), 107. https://doi.org/10.3390/jcm12010107
Bai, Z., Wang, L., Lin, H., Tacke, F., Cheng, G., & Qi, X. (2022). Use of Human Albumin Administration for the Prevention and Treatment of Hyponatremia in Patients with Liver Cirrhosis: A Systematic Review and Meta-Analysis. Journal of clinical medicine, 11(19), 5928. https://doi.org/10.3390/jcm11195928
de Mattos, A. Z., Simonetto, DA, Terra, C., Farias, AQ, Bittencourt, PL, Pase, THS, Toazza, MR, de Mattos, AA, & Alliance of Brazilian Centers for Cirrhosis Care – the ABC Group (2022). Albumin administration in patients with cirrhosis: Current role and novel perspectives. World journal of gastroenterology, 28(33), 4773–4786. https://doi.org/10.3748/wjg.v28.i33.4773
Mikkelsen, ACD, Thomsen, KL, Vilstrup, H., & Aagaard, NK (2022). Hypokalaemia - an active contributor to hepatic encephalopathy? Metabolic brain disease, 10.1007/s11011-022-01096-0. Advance online publication. https://doi.org/10.1007/s11011-022-01096-0
Alukal, JJ, John, S., & Thuluvath, PJ (2020). Hyponatremia in Cirrhosis: An Update. The American journal of gastroenterology, 115(11), 1775–1785. https://doi.org/10.14309/ajg.0000000000000786
Patidar, KR, Naved, MA, Grama, A., Adibuzzaman, M., Aziz Ali, A., Slaven, JE, Desai, AP, Ghabril, MS, Nephew, L., Chalasani, N., & Orman, ES (2022). Acute kidney disease is common and associated with poor outcomes in patients with cirrhosis and acute kidney injury. Journal of hepatology, 77(1), 108–115. https://doi.org/10.1016/j.jhep.2022.02.009
Gupta, K., Bhurwal, A., Law, C., Ventre, S., Minacapelli, CD, Kabaria, S., Li, Y., Tait, C., Catalano, C., & Rustgi, VK (2021). Acute kidney injury and hepatorenal syndrome in cirrhosis. World journal of gastroenterology, 27(26), 3984–4003. https://doi.org/10.3748/wjg.v27.i26.3984
Mikkelsen, A. C. D., Thomsen, K. L., Vilstrup, H., Aamann, L., Jones, H., Mookerjee, R. P., Hamilton-Dutoit, S., Frystyk, J., & Aagaard, N. K. (2021). Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats. American journal of physiology. Gastrointestinal and liver physiology, 320(4), G474–G483. https://doi.org/10.1152/ajpgi.00136.2020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tatyana Shulyatnikova, Valeriy Tumanskiy
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 281
Number of citations: 0