Advancements in Radiology and Diagnostic Imaging
DOI:
https://doi.org/10.12775/JEHS.2023.33.01.005Keywords
Radiology, Diagnostic imaging, artificial intelligence, Machine learning, Theranostics, Advanced imaging techniquesAbstract
Radiology and diagnostic imaging have undergone remarkable advancements in recent years, shaping the future of healthcare and improving patient outcomes. This review article provides an extensive overview of the developments and opportunities in various aspects of radiology, including CT, MRI, ultrasound, digital radiology, teleradiology, 3D printing, radiomics, radiogenomics, and nuclear radiology. It highlights the integration of artificial intelligence and machine learning in radiology, the emergence of theranostics, and the exploration of the human microbiome. The article also delves into advanced imaging techniques for cardiovascular diseases, hybrid imaging modalities in oncology, and optical imaging. The summary emphasizes the importance of continued innovation and development in radiology and diagnostic imaging to enhance patient care and global health outcomes.
References
Alsharqi, M., Woodward, W. J., & Mumith, J. A. (2018). Artificial intelligence and radiology: what will the future hold? BJR| Open, 1(1), 20180021. doi: 10.1259/bjro.20180021
Bellingham, G. A., & Barentsz, J. O. (2019). Advances in prostate imaging: computer-aided diagnosis and MRI-TRUS fusion. Translational Andrology and Urology, 8(4), 349-351. doi: 10.21037/tau.2019.08.05
Fishman, E. K., Ney, D. R., Heath, D. G., Corl, F. M., Horton, K. M., & Johnson, P. T. (2006). Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics, 26(3), 905-922. doi: 10.1148/rg.263055186
Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6), 1182-1195. doi: 10.1002/mrm.21391
Hounsfield, G. N. (1973). Computerized transverse axial scanning (tomography): Part 1. Description of system. The British Journal of Radiology, 46(552), 1016-1022. doi: 10.1259/0007-1285-46-552-1016
Kasoji, S. K., Rivera, J. N., Gessner, R. C., Chang, S., & Dayton, P. A. (2019). A review of acoustically sensitive contrast agents for ultrasound molecular imaging. Frontiers in Physiology, 10, 920. doi: 10.3389/fphys.2019.00920
McCollough, C. H., Leng, S., Yu, L., & Fletcher, J. G. (2015). Dual-and multi-energy CT: principles, technical approaches, and clinical applications. Radiology, 276(3), 637-653. doi: 10.1148/radiol.2015142631
Barr, R. G. (2019). Shear wave liver elastography. Abdominal Radiology, 44(6), 1907-1920. doi: 10.1007/s00261-018-1836-z
Lauterbur, P. C. (1973). Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature, 242(5394), 190-191. doi: 10.1038/242190a0
Mansfield, P., & Maudsley, A. A. (1977). Medical imaging by NMR. British Journal of Radiology, 50(591), 188-194. doi:1259/0007-1285-50-591-188
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868-9872. doi: 10.1073/pnas.87.24.9868
Dreyer, K. J., Mehta, A., Thrall, J., & Hirsch, J. (2015). Picture archiving and communication systems (PACS) and teleradiology. In S. K. T. K., & P. E. Z. (Eds.), Practical Imaging Informatics (pp. 37-66). Springer. doi: 10.1007/978-1-4419-5859-0_4
Langlotz, C. P. (2016). ACR-AI-LAB. Journal of the American College of Radiology, 13(12), 1610-1612. doi: 10.1016/j.jacr.2016.09.007
Chepelev, L., Wake, N., Ryan, J., Althobaity, W., Gupta, A., Arribas, E., ... & Pietila, T. (2018). Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Printing in Medicine, 4(1), 1-38. doi: 10.1186/s41205-018-0030-y
Mitsouras, D., Liacouras, P., Imanzadeh, A., Giannopoulos, A. A., Cai, T., Kumamaru, K. K., ... & Rybicki, F. J. (2015). Medical 3D printing for the radiologist. Radiographics, 35(7), 1965-1988. doi: 10.1148/rg.2015140320
Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563-577. doi: 10.1148/radiol.2015151169
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G., Granton, P., ... & Aerts, H. J. (2017). Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441-446. doi: 10.1016/j.ejca.2011.11.036
Segal, E., Sirlin, C. B., Ooi, C., Adler, A. S., Gollub, J., Chen, X., ... & Quon, A. (2007). Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology, 25(6), 675-680. doi:10.1038/nbt1306
Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine & Biology, 60(14), 5471-5496. doi: 10.1088/0031-9155/60/14/5471
Delso, G., & Fürst, S. (2014). Simultaneous PET/MR imaging. European Journal of Nuclear Medicine and Molecular Imaging, 41(1), 157-162. doi: 10.1007/s00259-013-2489-y
Cherry, S. R., Jones, T., Karp, J. S., Qi, J., Moses, W. W., & Badawi, R. D. (2018). Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. Journal of Nuclear Medicine, 59(1), 3-12. doi: 10.2967/jnumed.116.184163
Jadvar, H., & Colletti, P. M. (2014). Competitive advantage of PET/MRI. European Journal of Radiology, 83(1), 84-94. doi: 10.1016/j.ejrad.2013.09.014
Velikyan, I. (2015). Prospective of 68Ga-radiopharmaceutical development. Theranostics, 4(1), 47-80. doi: 10.7150/thno.7447
Larson, S. M., & Krenning, E. P. (2017). The future of molecular imaging and targeted radiotherapy. Journal of Nuclear Medicine, 58(1), 39S-45S. doi: 10.2967/jnumed.116.186775
Zhu, A. X., Salem, R., & Lencioni, R. (2017). Systemic therapy of hepatocellular carcinoma: from molecular target to precision medicine. Journal of Hepatology, 66(1), 1-3. doi: 10.1016/j.jhep.2016.09.009
Hicks, R. J., & Jackson, P. (2017). PET/CT in the management of neuroendocrine tumors: an update. PET Clinics, 12(4), 469-482. doi: 10.1016/j.cpet.2017.05.006
Velikyan, I. (2015). Prospective of 68Ga-radiopharmaceutical development. Theranostics, 4(1), 47-80. doi: 10.7150/thno.7447
Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., ... & Tang, A. (2017). Deep learning: A primer for radiologists. Radiographics, 37(7), 2113-2131. doi: 10.1148/rg.2017170077
Bauckneht, M., & Fiz, F. (2021). Theranostics in nuclear medicine: current state of the art and future challenges. Diagnostics, 11(1), 74. doi: 10.3390/diagnostics11010074
Strosberg, J., El-Haddad, G., Wolin, E., Hendifar, A., Yao, J., Chasen, B., ... & Bushnell, D. (2017). Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. New England Journal of Medicine, 376(2), 125-135. doi: 10.1056/NEJMoa1607427
Gollub, M. J., Arya, S., & Zhu, H. (2017). The role of imaging in the human microbiome. Journal of Magnetic Resonance Imaging, 45(2), 320-326. doi: 10.1002/jmri.25385
Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., & Wieben, O. (2012). 4D flow MRI. Journal of Magnetic Resonance Imaging, 36(5), 1015-1036. doi: 10.1002/jmri.23632
François, C. J., Markl, M., Schiebler, M. L., Niespodzany, E., Landgraf, B. R., Schlensak, C., & Frydrychowicz, A. (2012). Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. JACC: Cardiovascular Imaging, 5(6), 627-632. doi: 10.1016/j.jcmg.2012.01.019
Fletcher, J. W., Djulbegovic, B., Soares, H. P., Siegel, B. A., Lowe, V. J., Lyman, G. H., ... & Coleman, R. E. (2008). Recommendations on the use of 18F-FDG PET in oncology. Journal of Nuclear Medicine, 49(3), 480-508. doi: 10.2967/jnumed.107.047787
Hofman, M. S., Lawrentschuk, N., Francis, R. J., Tang, C., Vela, I., Thomas, P., ... & Iravani, A. (2020). Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. The Lancet, 395(10231), 1208-1216. doi: 10.1016/S0140-6736(20)30314-7
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., ... & Fujimoto, J. G. (1991). Optical coherence tomography. Science, 254(5035), 1178-1181. doi: 10.1126/science.1957169
Wang, L. V., & Hu, S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335(6075), 1458-1462. doi: 10.1126/science.1216210
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jan Łoginoff, Kinga Augustynowicz, Kinga Świąder, Sandra Ostaszewska, Przemysław Morawski, Filip Pactwa, Zuzanna Popińska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 598
Number of citations: 0