Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Advancements in Radiology and Diagnostic Imaging
  • Home
  • /
  • Advancements in Radiology and Diagnostic Imaging
  1. Home /
  2. Archives /
  3. Vol. 33 No. 1 (2023) /
  4. Review Articles

Advancements in Radiology and Diagnostic Imaging

Authors

  • Jan Łoginoff Comenius University in Bratislava https://orcid.org/0000-0002-9239-1920
  • Kinga Augustynowicz Uniwersytecki Szpital Kliniczny im. Wojskowej Akademii Medycznej – Centralny Szpital Weteranów Stefana Żeromskiego 113, 90-549 Łódź https://orcid.org/0000-0003-4547-9599
  • Kinga Świąder Faculty of Medicine, Uniwersytet Medyczny w Łodzi Plac Gen. Józefa Hallera 1, 90-647 Łódź https://orcid.org/0000-0003-0185-6524
  • Sandra Ostaszewska Uniwersytecki Szpital Kliniczny im. Wojskowej Akademii Medycznej – Centralny Szpital Weteranów Stefana Żeromskiego 113, 90-549 Łódź https://orcid.org/0000-0003-3708-6920
  • Przemysław Morawski Faculty of Medicine, Uniwersytet Medyczny w Łodzi al. Tadeusza Kościuszki 4, 90-419 Łódź https://orcid.org/0000-0002-1975-4350
  • Filip Pactwa Faculty of Medicine, Uniwersytet Medyczny w Łodzi al. Tadeusza Kościuszki 4, 90-419 Łódź https://orcid.org/0000-0002-9559-5072
  • Zuzanna Popińska Faculty of Medicine, Comenius University in Bratislava https://orcid.org/0000-0002-8224-6770

DOI:

https://doi.org/10.12775/JEHS.2023.33.01.005

Keywords

Radiology, Diagnostic imaging, artificial intelligence, Machine learning, Theranostics, Advanced imaging techniques

Abstract

Radiology and diagnostic imaging have undergone remarkable advancements in recent years, shaping the future of healthcare and improving patient outcomes. This review article provides an extensive overview of the developments and opportunities in various aspects of radiology, including CT, MRI, ultrasound, digital radiology, teleradiology, 3D printing, radiomics, radiogenomics, and nuclear radiology. It highlights the integration of artificial intelligence and machine learning in radiology, the emergence of theranostics, and the exploration of the human microbiome. The article also delves into advanced imaging techniques for cardiovascular diseases, hybrid imaging modalities in oncology, and optical imaging. The summary emphasizes the importance of continued innovation and development in radiology and diagnostic imaging to enhance patient care and global health outcomes.

References

Alsharqi, M., Woodward, W. J., & Mumith, J. A. (2018). Artificial intelligence and radiology: what will the future hold? BJR| Open, 1(1), 20180021. doi: 10.1259/bjro.20180021

Bellingham, G. A., & Barentsz, J. O. (2019). Advances in prostate imaging: computer-aided diagnosis and MRI-TRUS fusion. Translational Andrology and Urology, 8(4), 349-351. doi: 10.21037/tau.2019.08.05

Fishman, E. K., Ney, D. R., Heath, D. G., Corl, F. M., Horton, K. M., & Johnson, P. T. (2006). Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics, 26(3), 905-922. doi: 10.1148/rg.263055186

Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6), 1182-1195. doi: 10.1002/mrm.21391

Hounsfield, G. N. (1973). Computerized transverse axial scanning (tomography): Part 1. Description of system. The British Journal of Radiology, 46(552), 1016-1022. doi: 10.1259/0007-1285-46-552-1016

Kasoji, S. K., Rivera, J. N., Gessner, R. C., Chang, S., & Dayton, P. A. (2019). A review of acoustically sensitive contrast agents for ultrasound molecular imaging. Frontiers in Physiology, 10, 920. doi: 10.3389/fphys.2019.00920

McCollough, C. H., Leng, S., Yu, L., & Fletcher, J. G. (2015). Dual-and multi-energy CT: principles, technical approaches, and clinical applications. Radiology, 276(3), 637-653. doi: 10.1148/radiol.2015142631

Barr, R. G. (2019). Shear wave liver elastography. Abdominal Radiology, 44(6), 1907-1920. doi: 10.1007/s00261-018-1836-z

Lauterbur, P. C. (1973). Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature, 242(5394), 190-191. doi: 10.1038/242190a0

Mansfield, P., & Maudsley, A. A. (1977). Medical imaging by NMR. British Journal of Radiology, 50(591), 188-194. doi:1259/0007-1285-50-591-188

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868-9872. doi: 10.1073/pnas.87.24.9868

Dreyer, K. J., Mehta, A., Thrall, J., & Hirsch, J. (2015). Picture archiving and communication systems (PACS) and teleradiology. In S. K. T. K., & P. E. Z. (Eds.), Practical Imaging Informatics (pp. 37-66). Springer. doi: 10.1007/978-1-4419-5859-0_4

Langlotz, C. P. (2016). ACR-AI-LAB. Journal of the American College of Radiology, 13(12), 1610-1612. doi: 10.1016/j.jacr.2016.09.007

Chepelev, L., Wake, N., Ryan, J., Althobaity, W., Gupta, A., Arribas, E., ... & Pietila, T. (2018). Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Printing in Medicine, 4(1), 1-38. doi: 10.1186/s41205-018-0030-y

Mitsouras, D., Liacouras, P., Imanzadeh, A., Giannopoulos, A. A., Cai, T., Kumamaru, K. K., ... & Rybicki, F. J. (2015). Medical 3D printing for the radiologist. Radiographics, 35(7), 1965-1988. doi: 10.1148/rg.2015140320

Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563-577. doi: 10.1148/radiol.2015151169

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G., Granton, P., ... & Aerts, H. J. (2017). Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441-446. doi: 10.1016/j.ejca.2011.11.036

Segal, E., Sirlin, C. B., Ooi, C., Adler, A. S., Gollub, J., Chen, X., ... & Quon, A. (2007). Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology, 25(6), 675-680. doi:10.1038/nbt1306

Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine & Biology, 60(14), 5471-5496. doi: 10.1088/0031-9155/60/14/5471

Delso, G., & Fürst, S. (2014). Simultaneous PET/MR imaging. European Journal of Nuclear Medicine and Molecular Imaging, 41(1), 157-162. doi: 10.1007/s00259-013-2489-y

Cherry, S. R., Jones, T., Karp, J. S., Qi, J., Moses, W. W., & Badawi, R. D. (2018). Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. Journal of Nuclear Medicine, 59(1), 3-12. doi: 10.2967/jnumed.116.184163

Jadvar, H., & Colletti, P. M. (2014). Competitive advantage of PET/MRI. European Journal of Radiology, 83(1), 84-94. doi: 10.1016/j.ejrad.2013.09.014

Velikyan, I. (2015). Prospective of 68Ga-radiopharmaceutical development. Theranostics, 4(1), 47-80. doi: 10.7150/thno.7447

Larson, S. M., & Krenning, E. P. (2017). The future of molecular imaging and targeted radiotherapy. Journal of Nuclear Medicine, 58(1), 39S-45S. doi: 10.2967/jnumed.116.186775

Zhu, A. X., Salem, R., & Lencioni, R. (2017). Systemic therapy of hepatocellular carcinoma: from molecular target to precision medicine. Journal of Hepatology, 66(1), 1-3. doi: 10.1016/j.jhep.2016.09.009

Hicks, R. J., & Jackson, P. (2017). PET/CT in the management of neuroendocrine tumors: an update. PET Clinics, 12(4), 469-482. doi: 10.1016/j.cpet.2017.05.006

Velikyan, I. (2015). Prospective of 68Ga-radiopharmaceutical development. Theranostics, 4(1), 47-80. doi: 10.7150/thno.7447

Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., ... & Tang, A. (2017). Deep learning: A primer for radiologists. Radiographics, 37(7), 2113-2131. doi: 10.1148/rg.2017170077

Bauckneht, M., & Fiz, F. (2021). Theranostics in nuclear medicine: current state of the art and future challenges. Diagnostics, 11(1), 74. doi: 10.3390/diagnostics11010074

Strosberg, J., El-Haddad, G., Wolin, E., Hendifar, A., Yao, J., Chasen, B., ... & Bushnell, D. (2017). Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. New England Journal of Medicine, 376(2), 125-135. doi: 10.1056/NEJMoa1607427

Gollub, M. J., Arya, S., & Zhu, H. (2017). The role of imaging in the human microbiome. Journal of Magnetic Resonance Imaging, 45(2), 320-326. doi: 10.1002/jmri.25385

Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., & Wieben, O. (2012). 4D flow MRI. Journal of Magnetic Resonance Imaging, 36(5), 1015-1036. doi: 10.1002/jmri.23632

François, C. J., Markl, M., Schiebler, M. L., Niespodzany, E., Landgraf, B. R., Schlensak, C., & Frydrychowicz, A. (2012). Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. JACC: Cardiovascular Imaging, 5(6), 627-632. doi: 10.1016/j.jcmg.2012.01.019

Fletcher, J. W., Djulbegovic, B., Soares, H. P., Siegel, B. A., Lowe, V. J., Lyman, G. H., ... & Coleman, R. E. (2008). Recommendations on the use of 18F-FDG PET in oncology. Journal of Nuclear Medicine, 49(3), 480-508. doi: 10.2967/jnumed.107.047787

Hofman, M. S., Lawrentschuk, N., Francis, R. J., Tang, C., Vela, I., Thomas, P., ... & Iravani, A. (2020). Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. The Lancet, 395(10231), 1208-1216. doi: 10.1016/S0140-6736(20)30314-7

Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., ... & Fujimoto, J. G. (1991). Optical coherence tomography. Science, 254(5035), 1178-1181. doi: 10.1126/science.1957169

Wang, L. V., & Hu, S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335(6075), 1458-1462. doi: 10.1126/science.1216210

Downloads

  • PDF

Published

2023-05-26

How to Cite

1.
ŁOGINOFF, Jan, AUGUSTYNOWICZ, Kinga, ŚWIĄDER, Kinga, OSTASZEWSKA, Sandra, MORAWSKI, Przemysław, PACTWA, Filip and POPIŃSKA, Zuzanna. Advancements in Radiology and Diagnostic Imaging. Journal of Education, Health and Sport. Online. 26 May 2023. Vol. 33, no. 1, pp. 45-51. [Accessed 28 June 2025]. DOI 10.12775/JEHS.2023.33.01.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 No. 1 (2023)

Section

Review Articles

License

Copyright (c) 2023 Jan Łoginoff, Kinga Augustynowicz, Kinga Świąder, Sandra Ostaszewska, Przemysław Morawski, Filip Pactwa, Zuzanna Popińska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 817
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Radiology, Diagnostic imaging, artificial intelligence, Machine learning, Theranostics, Advanced imaging techniques
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop