Effects of the ketogenic diet on multiple sclerosis with a focus on the paediatric population
DOI:
https://doi.org/10.12775/JEHS.2023.25.01.005Keywords
multiple sclerosis, MS, ketogenic diet, pediatric multiple sclerosis, dietAbstract
Introduction and Purpose:
Multiple sclerosis (MS) is an autoimmune disease that damages the nervous system. Although MS is usually diagnosed in adults, it can also occur in children and adolescents, which presents diagnostic and therapeutic challenges. In recent years, attention has been drawn to the role of diet in alleviating MS symptoms, including in the pediatric population. The ketogenic diet, characterized by low carbohydrate intake, high fat intake, and moderate protein intake, is of interest as an additional therapeutic approach in MS due to its effects on metabolism and reduction of inflammation in the body.
Materials and methods:
This article reviews the literature on the impact of the ketogenic diet on MS, with particular emphasis on its impact on the course of MS in the pediatric population. Articles were searched by key words, e.g. multiple sclerosis, paediatrics, children, diet, ketogenic diet, in various configurations, in Scopus, Medline, Google Scholar databases.
Current state of knowledge:
While there are several studies on the effects of the ketogenic diet, including those on MS in children, the results are inconclusive and require further research. Some publications suggest that the ketogenic diet can help alleviate MS symptoms, such as problems with balance and coordination, and improve patients' quality of life.
Conclusions:
In conclusion, the ketogenic diet may be a promising approach in the treatment of pediatric MS, but requires further research and careful assessment of benefits and risks before its introduction into therapy.
References
Ad S, Gc E. Epidemiology of multiple sclerosis: a critical overview. Can J Neurol Sci J Can Sci Neurol. 1993;20(1). doi:10.1017/s0317167100047351
Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343(13):938-952. doi:10.1056/NEJM200009283431307
Compston A, Coles A. Multiple sclerosis. The Lancet. 2002;359(9313):1221-1231. doi:10.1016/S0140-6736(02)08220-X
Loma I, Heyman R. Multiple Sclerosis: Pathogenesis and Treatment. Curr Neuropharmacol. 2011;9(3):409. doi:10.2174/157015911796557911
McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121-127. doi:10.1002/ana.1032
Barkhof F, Filippi M, Miller DH, et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain. 1997;120(11):2059-2069. doi:10.1093/brain/120.11.2059
Fangerau T, Schimrigk S, Haupts M, et al. Diagnosis of multiple sclerosis: comparison of the Poser criteria and the new McDonald criteria. Acta Neurol Scand. 2004;109(6):385-389. doi:10.1111/j.1600-0404.2004.00246.x
Gitto L. Living with Multiple Sclerosis in Europe: Pharmacological Treatments, Cost of Illness, and Health-Related Quality of Life Across Countries. In: Zagon IS, McLaughlin PJ, eds. Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Codon Publications; 2017. Accessed March 6, 2023. http://www.ncbi.nlm.nih.gov/books/NBK470141/
Pugliatti M, Rosati G, Carton H, et al. The epidemiology of multiple sclerosis in Europe. Eur J Neurol. 2006;13(7):700-722. doi:10.1111/j.1468-1331.2006.01342.x
Brenton JN, Kammeyer R, Gluck L, Schreiner T, Makhani N. Multiple Sclerosis in Children: Current and Emerging Concepts. Semin Neurol. 2020;40(2):192-200. doi:10.1055/s-0040-1703000
Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature - Anna Jeong, Denise M. Oleske, Joan Holman, 2019. Accessed March 7, 2023. https://journals.sagepub.com/doi/10.1177/0883073819845827
Yan K, Balijepalli C, Desai K, Gullapalli L, Druyts E. Epidemiology of pediatric multiple sclerosis: A systematic literature review and meta-analysis. Mult Scler Relat Disord. 2020;44. doi:10.1016/j.msard.2020.102260
Brenton JN, Piccio L. Strengthening the link: Diet quality and disability in MS. Mult Scler J. 2023;29(2):157-159. doi:10.1177/13524585221127413
Jf C, Kj O, K S, V P, Tg D. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2). doi:10.1016/S1474-4422(19)30356-4
Bhargava P, Anthony DC. Metabolomics in multiple sclerosis disease course and progression. Mult Scler Houndmills Basingstoke Engl. 2020;26(5):591-598. doi:10.1177/1352458519876020
Brenton JN, Goldman MD. A study of dietary modification: Perceptions and attitudes of patients with multiple sclerosis. Mult Scler Relat Disord. 2016;8:54-57. doi:10.1016/j.msard.2016.04.009
Lim JM, Letchumanan V, Tan LTH, et al. Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review). Nutrients. 2022;14(17):3566. doi:10.3390/nu14173566
Kirkpatrick CF, Bolick JP, Kris-Etherton PM, et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol. 2019;13(5):689-711.e1. doi:10.1016/j.jacl.2019.08.003
Bough KJ, Wetherington J, Hassel B, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223-235. doi:10.1002/ana.20899
Benson LA, Healy BC, Gorman MP, et al. Elevated relapse rates in pediatric compared to adult MS persist for at least 6 years. Mult Scler Relat Disord. 2014;3(2):186-193. doi:10.1016/j.msard.2013.06.004
Mp G, Bc H, M PT, T C. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol. 2009;66(1). doi:10.1001/archneurol.2008.505
Ghassemi R, Narayanan S, Banwell B, et al. Quantitative determination of regional lesion volume and distribution in children and adults with relapsing-remitting multiple sclerosis. PloS One. 2014;9(2):e85741. doi:10.1371/journal.pone.0085741
B B, A BO, Dl A, et al. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol. 2011;10(5). doi:10.1016/S1474-4422(11)70045-X
Lavery AM, Collins BN, Waldman AT, et al. The contribution of secondhand tobacco smoke exposure to pediatric multiple sclerosis risk. Mult Scler Houndmills Basingstoke Engl. 2019;25(4):515-522. doi:10.1177/1352458518757089
Graves JS, Chitnis T, Weinstock-Guttman B, et al. Maternal and Perinatal Exposures Are Associated With Risk for Pediatric-Onset Multiple Sclerosis. Pediatrics. 2017;139(4):e20162838. doi:10.1542/peds.2016-2838
Huppke B, Ellenberger D, Rosewich H, Friede T, Gärtner J, Huppke P. Clinical presentation of pediatric multiple sclerosis before puberty. Eur J Neurol. 2014;21(3):441-446. doi:10.1111/ene.12327
Ahn JJ, O’Mahony J, Moshkova M, et al. Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Mult Scler Houndmills Basingstoke Engl. 2015;21(6):735-748. doi:10.1177/1352458514551453
Chitnis T, Graves J, Weinstock-Guttman B, et al. Distinct effects of obesity and puberty on risk and age at onset of pediatric MS. Ann Clin Transl Neurol. 2016;3(12):897-907. doi:10.1002/acn3.365
Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80(6):548-552. doi:10.1212/WNL.0b013e31828154f3
Aj T, Bl B, F B, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2). doi:10.1016/S1474-4422(17)30470-2
Krupp LB, Tardieu M, Amato MP, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler J. 2013;19(10):1261-1267. doi:10.1177/1352458513484547
Balint B, Haas J, Schwarz A, et al. T-cell homeostasis in pediatric multiple sclerosis: old cells in young patients. Neurology. 2013;81(9):784-792. doi:10.1212/WNL.0b013e3182a2ce0e
Vargas-Lowy D, Kivisäkk P, Gandhi R, et al. Increased Th17 response to myelin peptides in pediatric MS. Clin Immunol Orlando Fla. 2013;146(3):176-184. doi:10.1016/j.clim.2012.12.008
Cala CM, Moseley CE, Steele C, et al. T cell cytokine signatures: biomarkers in pediatric multiple sclerosis. J Neuroimmunol. 2016;297:1-8. doi:10.1016/j.jneuroim.2016.04.015
Kraus V, Srivastava R, Kalluri SR, et al. Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease. Neurology. 2014;82(6):470-473. doi:10.1212/WNL.0000000000000097
Jakimovski D, Awan S, Eckert SP, Farooq O, Weinstock-Guttman B. Multiple Sclerosis in Children: Differential Diagnosis, Prognosis, and Disease-Modifying Treatment. CNS Drugs. 2022;36(1):45-59. doi:10.1007/s40263-021-00887-w
McKay KA, Friberg E, Razaz N, Alexanderson K, Hillert J. Long-term Socioeconomic Outcomes Associated With Pediatric-Onset Multiple Sclerosis. JAMA Neurol. 2021;78(4):478-482. doi:10.1001/jamaneurol.2020.5520
Puchalska P, Crawford PA. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017;25(2):262-284. doi:10.1016/j.cmet.2016.12.022
Williams MS, Turos E. The Chemistry of the Ketogenic Diet: Updates and Opportunities in Organic Synthesis. Int J Mol Sci. 2021;22(10):5230. doi:10.3390/ijms22105230
Alharbi A, Al-Sowayan NS. The Effect of Ketogenic-Diet on Health. Food Nutr Sci. 2020;11(4):301-313. doi:10.4236/fns.2020.114022
Steinhauser ML, Olenchock BA, O’Keefe J, et al. The circulating metabolome of human starvation. JCI Insight. 2018;3(16). doi:10.1172/jci.insight.121434
Valenzuela PL, Castillo-García A, Lucia A, Naclerio F. Effects of Combining a Ketogenic Diet with Resistance Training on Body Composition, Strength, and Mechanical Power in Trained Individuals: A Narrative Review. Nutrients. 2021;13(9):3083. doi:10.3390/nu13093083
Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789-796. doi:10.1038/ejcn.2013.116
Phinney SD, Bistrian BR, Wolfe RR, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: Physical and biochemical adaptation. Metab - Clin Exp. 1983;32(8):757-768. doi:10.1016/0026-0495(83)90105-1
D D, K K, A P. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients. 2022;14(23). doi:10.3390/nu14235003
Kim DY, Hao J, Liu R, Turner G, Shi FD, Rho JM. Inflammation-Mediated Memory Dysfunction and Effects of a Ketogenic Diet in a Murine Model of Multiple Sclerosis. PLOS ONE. 2012;7(5):e35476. doi:10.1371/journal.pone.0035476
Choi IY, Piccio L, Childress P, et al. A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016;15(10):2136-2146. doi:10.1016/j.celrep.2016.05.009
D DM, F C, G A, et al. Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients. 2022;14(12). doi:10.3390/nu14122384
Vauzour D. Polyphenols and brain health. OCL. 2017;24(2):A202. doi:10.1051/ocl/2017008
M B, F S, F Z, S B. Impact of Dietary Intervention on Serum Neurofilament Light Chain in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflammation. 2021;9(1). doi:10.1212/NXI.0000000000001102
Bock M, Karber M, Kuhn H. Ketogenic diets attenuate cyclooxygenase and lipoxygenase gene expression in multiple sclerosis. eBioMedicine. 2018;36:293-303. doi:10.1016/j.ebiom.2018.08.057
Brenton JN, Banwell B, Bergqvist AGC, et al. Pilot study of a ketogenic diet in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflammation. 2019;6(4):e565. doi:10.1212/NXI.0000000000000565
Brenton JN, Lehner-Gulotta D, Woolbright E, et al. Phase II study of ketogenic diets in relapsing multiple sclerosis: safety, tolerability and potential clinical benefits. J Neurol Neurosurg Psychiatry. 2022;93(6):637-644. doi:10.1136/jnnp-2022-329074
Benlloch M, López-Rodríguez MM, Cuerda-Ballester M, et al. Satiating Effect of a Ketogenic Diet and Its Impact on Muscle Improvement and Oxidation State in Multiple Sclerosis Patients. Nutrients. 2019;11(5):1156. doi:10.3390/nu11051156
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Patrycja Szponarowicz, Przemysław Raczkiewicz, Mateusz Rzeszutko, Bartosz Snopkowski, Eliasz Panek, Damian Jasłowski, Dominika Panasiuk, Tomasz Korzec, Jakub Sosnowski, Mateusz Skrętowicz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 493
Number of citations: 0