The role of environmental factors in the etiology of schizophrenia
DOI:
https://doi.org/10.12775/JEHS.2023.23.01.006Keywords
hypothesis of schizophrenia, schizophrenia, environmental factorsAbstract
Introduction: Schizophrenia is a psychotic disease characterized by multifaceted psychopathology. To date, research has shown that it is an inherited disease and significant progress has been made in identifying genetic risk factors.
Methods: This paper summarizes the current and most recent findings on the role of environmental factors, and demonstrates the continued need for more in-depth research to better understand how this type of disorder occurs.
Results: Recent studies show that 15-40% of the risk that comes from environmental sources is not fully understood. Environmental factors that have been repeatedly studied and have been proven to influence the development of the disease include: obstetric complications, infections, childbirth in the winter or spring month, living in the city, severe childhood events or marijuana use.
Discussion: Schizophrenia is a devastating mental illness that remains poorly understood. A full picture of how genetic and environmental risk factors affect the risk of developing schizophrenia requires an understanding of the interactions between them. It should be taken into account that for this disorder, the interactions between genetic and environmental risk factors are also not well understood and deserve further research in the future.
In the case of schizophrenia, the interactions between environmental and genetic risk factors are not well understood and still require further research. Elucidating the mechanisms underlying the disease is extremely important, as it may have an impact on taking measures to prevent the development of the disorder. In addition, their discovery will help improve treatment. In conclusion, it is important to emphasize the need for further research to better understand the impact of environmental factors on the development of susceptibility to a mental disorder such as schizophrenia.
References
Tueth MJ. Schizophrenia: Emil Kraepelin, Adolph Meyer, and beyond. J Emerg Med. 1995 Nov-Dec;13(6):805-9.
Messias E., Chen C.-Y., Eaton W. W. (2007). Epidemiology of Schizophrenia: review of Findings and Myths. Psychiatr. Clin. North Am.30, 323–338.
McGrath J., Saha S., Chant D., Welham J. (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30 67–76.
Lambert T. J. R., Velakoulis D., Pantelis C. (2003). Medical comorbidity in schizophrenia.Med. J. Austr. 178 (Suppl. 9) S67–S70. 1
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. Arlington, VA: American Psychiatric Association.
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97.
Sullivan P. F., Kendler K. S., Neale M. C. (2003). Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60 1187–1192.
Lichtenstein P., Yip B. H., Björk C., Pawitan Y., Cannon T. D., Sullivan P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373 234–239.
Lichtenstein P., Yip B. H., Björk C., Pawitan Y., Cannon T. D., Sullivan P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373 234–239.
Lee S. H., Ripke S., Neale B. M., Faraone S. V., Purcell S. M., Perlis R. H., et al. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet.45 984–994.
Pettersson E., Larsson H., Lichtenstein P. (2016). Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. Mol. Psychiatry 21 717–721.
Brainstorm Consortium (2018). Analysis of shared heritability in common disorders of the brain. Science 360-8757.
Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry. 2009;14(8):774–85.
Sanders SJ, Neale BM, Huang H, Werling DM, An JY, Dong S, et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat Neurosci. 2017;20(12):1661–8.
Kos MZ, Carless MA, Peralta J, Curran JE, Quillen EE, Almeida M, et al. Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance. Am J Med Genet B Neuropsychiatr Genet. 2017;174(8):817–27.
Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, Girirajan S, et al. Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry. 2013;70(6):582–90.
Cannon M., Jones P. B., Murray R. M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. Am. J. Psychiatry 159 1080–1092.
Dalman C., Thomas H. V., David A. S., Gentz J., Lewis G., Allebeck P. (2001). Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study. Br. J. Psychiatry 179 403–408.
Byrne M., Agerbo E., Bennedsen B., Eaton W. W., Mortensen P. B. (2007). Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr. Res. 97 51–59.
Cannon T. D., Rosso I. M., Hollister J. M., Bearden C. E., Sanchez L. E., Hadley T. (2000). A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia.Schizophr. Bull. 26 351–366.
Mittal V. A., Ellman L. M., Cannon T. D. (2008). Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications.Schizophr. Bull. 34 1083–1094.
Ursini G., Punzi G., Chen Q., Marenco S., Robinson J. F., Porcelli A., et al. (2018). Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med. 24 792–801.
Vassos E., Kou J., Tosato S., Maxwell J., Dennison C. A., Legge S. E., et al. (2021). Lack of support for the genes by early environment interaction hypothesis in the pathogenesis of Schizophrenia. Schizophr. Bull. sbab052. Advance online publication.
Nicodemus K., Marenco S., Batten A., Vakkalanka R., Egan M., Straub R., et al. (2008). Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol. Psychiatry 13873–877.
Joo E.-J., Lee K.-Y., Jeong S.-H., Roh M.-S., Kim S. H., Ahn Y.-M., et al. (2009). AKT1 gene polymorphisms and obstetric complications in the patients with schizophrenia. Psychiatry Invest. 6102–107.
Arias I., Sorlozano A., Villegas E., Luna J. D. D., McKenney K., Cervilla J., et al. (2012). Infectious agents associated with schizophrenia: a meta-analysis. Schizophr. Res. 136 128–136.
Corvin A., Morris D. W. (2014). Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol. Psychiatry 75, 276–283.
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.
Sekar A., Bialas A. R., de Rivera H., Davis A., Hammond T. R., Kamitaki N., et al.. (2016). Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183.
Brenhouse H. C., Schwarz J. M. (2016). Immunoadolescence: neuroimmune development and adolescent behavior. Neurosci. Biobehav. Rev. 70, 288–299.
Miller B. J., Buckley P., Seabolt W., Mellor A., Kirkpatrick B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol. Psychiatry 70, 663–671.
Di Nicola M., Cattaneo A., Hepgul N., Di Forti M., Aitchison K. J., Janiri L., et al.. (2013). Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav. Immun. 31, 90–95.
de Witte L., Tomasik J., Schwarz E., Guest P. C., Rahmoune H., Kahn R. S., et al.. (2014). Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr. Res. 154, 23–29.
Pollak T. A., Drndarski S., Stone J. M., David A. S., McGuire P., Abbott N. J. (2017). The blood-brain barrier in psychosis. Lancet Psychiatry.[Epub ahead of print].
Prandovszky E., Gaskell E., Martin H., Dubey J. P., Webster J. P., McConkey G. A. (2011). The neurotropic parasite toxoplasma gondii increases dopamine metabolism. PLoS One 6:e23866.
Hamdani N., Daban-Huard C., Lajnef M., Gadel R., Le Corvoisier P., Delavest M., et al. (2015). Cognitive deterioration among bipolar disorder patients infected by Toxoplasma gondii is correlated to interleukin 6 levels. J. Affect. Disord. 179 161–166.
Cook T. B., Brenner L. A., Cloninger C. R., Langenberg P., Igbide A., Giegling I., et al. (2015). “Latent” infection with Toxoplasma gondii: association with trait aggression and impulsivity in healthy adults. J. Psychiatric Res.60 87–94.
Gohardehi S., Sharif M., Sarvi S., Moosazadeh M., Alizadeh-Navaei R., Hosseini S. A., et al. (2018). The potential risk of toxoplasmosis for traffic accidents: a systematic review and meta-analysis. Exp. Parasitol. 191 19–24.
Mednick S. A., Machon R. A., Huttunen M. O., Bonett D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45 189–192.
Khandaker G. M., Zimbron J., Dalman C., Lewis G., Jones P. B. (2012). Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr. Res. 139161–168.
Lee Y. H., Cherkerzian S., Seidman L. J., Papandonatos G. D., Savitz D. A., Tsuang M. T., et al. (2020). Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: variation by severity of infection and offspring sex. Am. J. Psychiatry 177 66–75.
Sørensen H. J., Mortensen E. L., Reinisch J. M., Mednick S. A. (2008). Association between prenatal exposure to bacterial infection and risk of Schizophrenia. Schizophr. Bull. 35 631–637.
Dalman C., Allebeck P., Gunnell D., Harrison G., Kristensson K., Lewis G., et al. (2008). Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million swedish subjects. Am. J. Psychiatry 165 59–65.
Brown S., Birtwistle J., Roe L., Thompson C. (1999). The unhealthy lifestyle of people with schizophrenia. Psychol. Med. 29 697–701.
Pini A., Stenbeck M., Galanis I., Kallberg H., Danis K., Tegnell A., et al. (2019). Socioeconomic disparities associated with 29 common infectious diseases in Sweden, 2005-14: an individually matched case-control study.Lancet Infect. Dis. 19 165–176.
Neiderud C.-J. (2015). How urbanization affects the epidemiology of emerging infectious diseases.Infect. Ecol. Epidemiol. 5 27060–27060.
Dantzer R., O’Connor J. C., Freund G. G., Johnson R. W., Kelley K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev, Neurosci. 9 46–56.
Momtazmanesh S., Zare-Shahabadi A., Rezaei N. (2019). Cytokine alterations in schizophrenia: an updated review. Front. Psychiatry 10:892.
Bayer T. A., Falkai P., Maier W. (1999). Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the” two hit hypothesis. J. Psychiatric Res. 33 543–548.
Maynard T. M., Sikich L., Lieberman J. A., LaMantia A.-S. (2001). Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr. Bull. 27 457–476.
Benros M. E., Mortensen P. B. (2020). Role of infection, autoimmunity, atopic disorders, and the immune system in schizophrenia: evidence from epidemiological and genetic studies. Curr. Top Behav. Neurosci. 44 141–159.
Jeppesen R., Benros M. E. (2019). Autoimmune diseases and psychotic disorders. Front. Psychiatry 10:131.
Clarke M. C., Tanskanen A., Huttunen M., Whittaker J. C., Cannon M. (2009). Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. Am. J. Psychiatry 166 1025–1030.
Blomström Å, Karlsson H., Gardner R., Jörgensen L., Magnusson C., Dalman C. (2016). Associations between maternal infection during pregnancy, childhood infections, and the risk of subsequent psychotic disorder—a Swedish Cohort study of nearly 2 million individuals. Schizophr. Bull. 42 125–133.
Nielsen P. R., Laursen T. M., Mortensen P. B. (2013). Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood. Schizophr. Bull.39 230–237.
Nudel R., Wang Y., Appadurai V., Schork A. J., Buil A., Agerbo E., et al. (2019). A large-scale genomic investigation of susceptibility to infection and its association with mental disorders in the Danish population. Transl. Psychiatry 9 1–10.
Matzaraki V., Kumar V., Wijmenga C., Zhernakova A. (2017). The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 18:76.
Ripke S., Walters J. T., O’Donovan M. C. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2020). Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv [Preprint].
Mokhtari R., Lachman H. M. (2016). The major histocompatibility complex (MHC) in schizophrenia: a review. J. Clin. Cell. Immunol.7:479.
Bergen S. E., O’Dushlaine C. T., Ripke S., Lee P. H., Ruderfer D. M., Akterin S., et al. (2012). Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol. Psychiatry 17 880–886.
Børglum A., Demontis D., Grove J., Pallesen J., Hollegaard M. V., Pedersen C., et al. (2014). Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol. Psychiatry 19 325–333.
Demontis D., Nyegaard M., Buttenschøn H. N., Hedemand A., Pedersen C. B., Grove J., et al. (2011). Association of GRIN1 and GRIN2A-D with schizophrenia and genetic interaction with maternal herpes simplex virus-2 infection affecting disease risk. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156b 913–922.
Bierut L. J. (2010). Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25.Trends Pharmacol. Sci. 31 46–51.
Karlsson H., Dal H., Gardner R. M., Torrey E. F., Dalman C. (2019). Birth month and later diagnosis of schizophrenia. A population-based cohort study in Sweden. J. Psychiatric Res. 1161–6.
Davies G., Welham J., Chant D., Torrey E. F., McGrath J. (2003). A systematic review and meta-analysis of northern hemisphere season of birth studies in schizophrenia. Schizophr. Bull. 29587–593.
Narita K., Sasaki T., Akaho R., Okazaki Y., Kusumi I., Kato T., et al. (2000). Human leukocyte antigen and season of birth in Japanese patients with schizophrenia. Am. J. Psychiatry157 1173–1175.
Alfimova M. V., Korovaitseva G. I., Lezheiko T. V., Golimbet V. E. (2017). Interaction effects of season of birth and cytokine genes on schizotypal traits in the general population. Schizophr. Res. Treatm. 2017:5763094.
Henssler J., Brandt L., Müller M., Liu S., Montag C., Sterzer P., et al. (2020). Migration and schizophrenia: meta-analysis and explanatory framework. Eur. Arch. Psychiatry Clin. Neurosci.270 325–335.
Cantor-Graae E., Selten J. P. (2005). Schizophrenia and migration: a meta-analysis and review. Am. J. Psychiatry 162 12–24.
Davies A. A., Basten A., Frattini C. (2009). Migration: a social determinant of the health of migrants. Eurohealth 16 10–12.
McGrath J. J., Burne T. H., Féron F., Mackay-Sim A., Eyles D. W. (2010a). Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr. Bull. 36 1073–1078.
Rechel B., Mladovsky P., Ingleby D., Mackenbach J. P., McKee M. (2013). Migration and health in an increasingly diverse Europe. Lancet 381 1235–1245.
Selten J.-P., van der Ven E., Rutten B. P. F., Cantor-Graae E. (2013). The social defeat hypothesis of schizophrenia: an update.Schizophr. Bull. 39 1180–1186.
Dykxhoorn J., Hollander A. C., Lewis G., Magnusson C., Dalman C., Kirkbride J. B. (2019). Risk of schizophrenia, schizoaffective, and bipolar disorders by migrant status, region of origin, and age-at-migration: a national cohort study of 1.8 million people. Psychol. Med. 49 2354–2363.
Anderson K. K., Cheng J., Susser E., McKenzie K. J., Kurdyak P. (2015). Incidence of psychotic disorders among first-generation immigrants and refugees in Ontario. Cmaj 187 E279–E286.
Leão T. S., Sundquist J., Frank G., Johansson L.-M., Johansson S.-E., Sundquist K. (2006). Incidence of schizophrenia or other psychoses in first-and second-generation immigrants: a national cohort study. J. Nervous Ment. Dis. 194 27–33.
McGrath J. (2011). Letter to the Editor: migrant status, vitamin D and risk of schizophrenia.Psychol. Med. 41 892–895.
Vassos E., Pedersen C. B., Murray R. M., Collier D. A., Lewis C. M. (2012). Meta-analysis of the association of urbanicity with Schizophrenia.Schizophr. Bull. 38 1118–1123.
Vassos E., Agerbo E., Mors O., Pedersen C. B. (2016). Urban–rural differences in incidence rates of psychiatric disorders in Denmark. Br. J. Psychiatry 208 435–440.
Colodro-Conde L., Couvy-Duchesne B., Whitfield J. B., Streit F., Gordon S., Kemper K. E., et al. (2018). Association between population density and genetic risk for schizophrenia. JAMA Psychiatry 75 901–910.
Mortensen P. B., Pedersen C. B., Melbye M., Mors O., Ewald H. (2003). Individual and familial risk factors for bipolar affective disorders in Denmark. Arch. Gen. Psychiatry 60 1209–1215.
Allardyce J., Boydell J. (2006). Environment and schizophrenia: review: the wider social environment and schizophrenia. Schizophr. Bull.32 592–598.
Solmi F., Lewis G., Zammit S., Kirkbride J. (2018). Polygenic risk for schizophrenia and neighbourhood characteristics at birth: findings from a UK longitudinal birth cohort. PsyArXiv[Preprint].
Sariaslan A., Fazel S., D’onofrio B., Långström N., Larsson H., Bergen S., et al. (2016). Schizophrenia and subsequent neighborhood deprivation: revisiting the social drift hypothesis using population, twin and molecular genetic data.Transl. Psychiatry 6:e796.
Matheson S., Shepherd A. M., Pinchbeck R., Laurens K., Carr V. J. (2013). Childhood adversity in schizophrenia: a systematic meta-analysis. Psychol. Med. 43 225–238.
Bailey T., Alvarez-Jimenez M., Garcia-Sanchez A. M., Hulbert C., Barlow E., Bendall S. (2018). Childhood trauma is associated with severity of hallucinations and delusions in psychotic disorders: a systematic review and meta-analysis.Schizophr. Bull. 44 1111–1122.
Rowland T. A., Marwaha S. (2018). Epidemiology and risk factors for bipolar disorder. Ther. Adv. Psychopharmacol. 8 251–269.
Liang H., Olsen J., Yuan W., Cnattingus S., Vestergaard M., Obel C., et al. (2016). Early life bereavement and schizophrenia: a nationwide cohort study in denmark and Sweden. Medicine95:e2434.
Liang H., Olsen J., Yuan W., Cnattingus S., Vestergaard M., Obel C., et al. (2016). Early life bereavement and schizophrenia: a nationwide cohort study in denmark and Sweden. Medicine95:e2434.
Wilcox H. C., Kuramoto S. J., Lichtenstein P., Långström N., Brent D. A., Runeson B. (2010). Psychiatric morbidity, violent crime, and suicide among children and adolescents exposed to parental death. J. Am. Acad. Child Adolesc. Psychiatry 49 514–523.
Ranning A., Laursen T. M., Thorup A., Hjorthøj C., Nordentoft M. (2015). Serious mental illness and disrupted caregiving for children: a nationwide, register-based cohort study. J. Clin. Psychiatry 76 1006–1014.
Trotta A., Iyegbe C., Di Forti M., Sham P. C., Campbell D. D., Cherny S. S., et al. (2016). Interplay between Schizophrenia polygenic risk score and childhood adversity in first-presentation psychotic disorder: a pilot study. PLoS One11:e0163319.
Pries L.-K., Klingenberg B., Menne-Lothmann C., Decoster J., van Winkel R., Collip D., et al. (2020). Polygenic liability for schizophrenia and childhood adversity influences daily-life emotion dysregulation and psychosis proneness. Acta Psychiatr. Scand. 141 465–475.
Mondelli V., Cattaneo A., Murri M. B., Di Forti M., Handley R., Hepgul N., et al. (2011). Stress and inflammation reduce BDNF expression in first-episode psychosis: a pathway to smaller hippocampal volume. J. Clin. Psychiatry 721677–1684.
de Castro-Catala M., van Nierop M., Barrantes-Vidal N., Cristóbal-Narváez P., Sheinbaum T., Kwapil T. R., et al. (2016). Childhood trauma, BDNF Val66Met and subclinical psychotic experiences. Attempt at replication in two independent samples. J. Psychiatric Res. 83 121–129.
Trotta A., Iyegbe C., Yiend J., Dazzan P., David A. S., Pariante C., et al. (2019). Interaction between childhood adversity and functional polymorphisms in the dopamine pathway on first-episode psychosis. Schizophr. Res. 205 51–57.
Marconi A., Di Forti M., Lewis C. M., Murray R. M., Vassos E. (2016). Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr. Bull. 42 1262–1269.
Arseneault L., Cannon M., Witton J., Murray R. M. (2004). Causal association between cannabis and psychosis: examination of the evidence. Br. J. Psychiatry 184 110–117.
Kuepper R., van Os J., Lieb R., Wittchen H.-U., Höfler M., Henquet C. (2011). Continued cannabis use and risk of incidence and persistence of psychotic symptoms: 10 year follow-up cohort study. BMJ 342 d738–d738.
Agrawal A., Neale M. C., Prescott C. A., Kendler K. S. (2004). Cannabis and other illicit drugs: comorbid use and abuse/dependence in males and females. Behav. Genet. 34 217–228.
Khokhar J. Y., Dwiel L. L., Henricks A. M., Doucette W. T., Green A. I. (2018). The link between schizophrenia and substance use disorder: a unifying hypothesis. Schizophr. Res.194 78–85.
Giordano G. N., Ohlsson H., Sundquist K., Sundquist J., Kendler K. S. (2015). The association between cannabis abuse and subsequent schizophrenia: a Swedish national co-relative control study. Psychol. Med. 45 407–414.
WHO (2018). Management of Substance Abuse.
Schoeler T., Monk A., Sami M. B., Klamerus E., Foglia E., Brown R., et al. (2016). Continued versus discontinued cannabis use in patients with psychosis: a systematic review and meta-analysis.Lancet Psychiatry 3 215–225.
Verweij K. J., Abdellaoui A., Nivard M. G., Cort A. S., Ligthart L., Draisma H. H., et al. (2017). Genetic association between schizophrenia and cannabis use. Drug Alcohol. Dependence 171117–121.
Power R. A., Verweij K. J., Zuhair M., Montgomery G. W., Henders A. K., Heath A. C., et al. (2014). Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol. Psychiatry 19 1201–1204.
French L., Gray C., Leonard G., Perron M., Pike G. B., Richer L., et al. (2015). Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiatry 721002–1011.
Lenroot R. K., Gogtay N., Greenstein D. K., Wells E. M., Wallace G. L., Clasen L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence.Neuroimage 36 1065–1073.
Paus T., Nawaz-Khan I., Leonard G., Perron M., Pike G. B., Pitiot A., et al. (2010). Sexual dimorphism in the adolescent brain: role of testosterone and androgen receptor in global and local volumes of grey and white matter. Horm. Behav. 57 63–75.
Di Forti M., Iyegbe C., Sallis H., Kolliakou A., Falcone M. A., Paparelli A., et al. (2012). Confirmation that the AKT1 (rs2494732) genotype influences the risk of psychosis in cannabis users. Biol. Psychiatry 72 811–816.
Gillespie N. A., Kendler K. S. (2020). Use of genetically informed methods to clarify the nature of the association between cannabis use and risk for schizophrenia. JAMA Psychiatry 78 467–468. 1
IARC Scientific (2013). Air Pollution and Cancer. Lyon: IARC Scientific.
Shi L., Wu X., Danesh Yazdi M., Braun D., Abu Awad Y., Wei Y., et al. (2020). Long-term effects of PM(2⋅5) on neurological disorders in the American Medicare population: a longitudinal cohort study. Lancet. Planetary Health 4 e557–e565.
Calderón-Garcidueñas L., Solt A. C., Henríquez-Roldán C., Torres-Jardón R., Nuse B., Herritt L., et al. (2008). Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol. Pathol. 36289–310.
Pope C. A., Burnett R. T., Thurston G. D., Thun M. J., Calle E. E., Krewski D., et al. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution - Epidemiological evidence of general pathophysiological pathways of disease. Circulation 109 71–77.
Antonsen S., Mok P. L., Webb R. T., Mortensen P. B., McGrath J. J., Agerbo E., et al. (2020). Exposure to air pollution during childhood and risk of developing schizophrenia: a national cohort study. Lancet Planet. Health 4 e64–e73.
Oudin A., Bråbäck L., Åström D. O., Strömgren M., Forsberg B. (2016). Association between neighbourhood air pollution concentrations and dispensed medication for psychiatric disorders in a large longitudinal cohort of Swedish children and adolescents. BMJ Open 6:e010004.
Liang Z., Xu C., Cao Y., Kan H.-D., Chen R.-J., Yao C.-Y., et al. (2019). The association between short-term ambient air pollution and daily outpatient visits for schizophrenia: a hospital-based study. Environ. Pollut. 244 102–108.
Khan A., Plana-Ripoll O., Antonsen S., Brandt J., Geels C., Landecker H., et al. (2019). Environmental pollution is associated with increased risk of psychiatric disorders in the US and Denmark. PLoS Biol. 17:e3000353.
Jackson J. G., Diaz F. J., Lopez L., de Leon J. (2015). A combined analysis of worldwide studies demonstrates an association between bipolar disorder and tobacco smoking behaviors in adults.Bipolar. Disord. 17 575–597.
Munafò M. R., Lönn S. L., Sundquist J., Sundquist K., Kendler K. (2016). Snus use and risk of schizophrenia and non-affective psychosis.Drug Alcohol. Dependence 164 179–182.
Vermeulen J. M., Wootton R. E., Treur J. L., Sallis H. M., Jones H. J., Zammit S., et al. (2019). Smoking and the risk for bipolar disorder: evidence from a bidirectional Mendelian randomisation study. Br. J. Psychiatry 218 88–94.
Wootton R. E., Richmond R. C., Stuijfzand B. G., Lawn R. B., Sallis H. M., Taylor G. M., et al. (2020). Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol. Med.50 2435–2443.
Molloy C., Conroy R. M., Cotter D. R., Cannon M. (2011). Is traumatic brain injury a risk factor for schizophrenia? A meta-analysis of case-controlled population-based studies. Schizophr. Bull. 37 1104–1110.
Orlovska S., Pedersen M. S., Benros M. E., Mortensen P. B., Agerbo E., Nordentoft M. (2014). Head injury as risk factor for psychiatric disorders: a nationwide register-based follow-up study of 113,906 persons with head injury. Am. J. Psychiatry 171 463–469.
Bryant R. A., O’donnell M. L., Creamer M., McFarlane A. C., Clark C. R., Silove D. (2010). The psychiatric sequelae of traumatic injury. Am. J. Psychiatry 167 312–320.
van der Werf M., Thewissen V., Dominguez M. D., Lieb R., Wittchen H., van Os J. (2010). Adolescent development of psychosis as an outcome of hearing impairment: a 10-year longitudinal study. Psychol. Med. 41 477–485.
Linszen M. M. J., Brouwer R. M., Heringa S. M., Sommer I. E. (2016). Increased risk of psychosis in patients with hearing impairment: review and meta-analyses. Neurosci. Biobehav. Rev. 62 1–20.
Guloksuz S., Pries L.-K., Delespaul P., Kenis G., Luykx J. J., Lin B. D., et al. (2019). Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study.World Psychiatry 18 173–182.
Sarris J., Logan A. C., Akbaraly T. N., Amminger G. P., Balanzá-Martínez V., Freeman M. P., et al. (2015). Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry 2 271–274.
Hsieh Y.-C., Chou L.-S., Lin C.-H., Wu H.-C., Li D.-J., Tseng P.-T. (2019). Serum folate levels in bipolar disorder: a systematic review and meta-analysis. BMC Psychiatry 19:305.
Yadav U., Kumar P., Gupta S., Rai V. (2016). Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian J. Psychiatry 20 41–51.
Cui X., McGrath J. J., Burne T. H., Eyles D. W. (2021). Vitamin D and schizophrenia: 20 years on. Mol. Psychiatry [Epub ahead of print].
Lewis S. J., Zammit S., Gunnell D., Smith G. D. (2005). A meta-analysis of the MTHFR C677T polymorphism and schizophrenia risk. Am. J. Med. Genet. Part B Neuropsych. Genet. 135 2–4.
Wang D., Zhai J.-X., Liu D.-W. (2016). Serum folate levels in schizophrenia: a meta-analysis.Psychiatry Res. 235 83–89.
Valipour G., Saneei P., Esmaillzadeh A. (2014). Serum vitamin D levels in relation to schizophrenia: a systematic review and meta-analysis of observational studies. J. Clin. Endocrinol. Metab. 99 3863–3872.
McGrath J. J., Eyles D. W., Pedersen C. B., Anderson C., Ko P., Burne T. H., et al. (2010b). Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch. Gen. Psychiatry 67 889–894.
Eyles D. W., Trzaskowski M., Vinkhuyzen A. A., Mattheisen M., Meier S., Gooch H., et al. (2018). The association between neonatal vitamin D status and risk of schizophrenia. Sci. Rep. 8 1–8.
Eyles D. W., Burne T. H., McGrath J. J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front. Neuroendocrinol. 34:47–64.
Pillinger T, D’Ambrosio E, McCutcheon R, Howes OD, Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models, Mol Psychiatry24(6) (2019) 776–794.
Borovcanin M, Jovanovic I, Dejanovic SD, Radosavljevic G, Arsenijevic N, Lukic ML, Increase systemic levels of IL-23 as a possible constitutive marker in schizophrenia, Psychoneuroendocrinology 56 (2015) 143–7.
[91] Hartwig FP, Borges MC, Horta BL, Bowden J, Davey Smith G, Inflammatory Biomarkers and Risk of Schizophrenia: A 2-Sample Mendelian Randomization Study, JAMA Psychiatry 74(12) (2017) 1226–1233.
Gao L, Li Z, Chang S, Wang J, Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis, PLoS One 9(3) (2014) e90407.
Szeligowski T, Yun AL, Lennox BR, Burnet PWJ, The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications, Frontiers in psychiatry 11 (2020) 156.
Kanji S, Fonseka TM, Marshe VS, Sriretnakumar V, Hahn MK, Müller DJ, The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain, European archives of psychiatry and clinical neuroscience 268(1) (2018) 3–15.
Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, Liu Y, Cheng K, Zhou C, Wang H, Zhou X, Gui S, Perry SW, Wong ML, Licinio J, Wei H, Xie P, The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice, Sci Adv 5(2) (2019) eaau8317.
Kim YK, Shin C, The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments, Current neuropharmacology 16(5) (2018) 559–573.
Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, Dickerson FB, Yolken RH, Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia, Schizophr Res 148(1–3) (2013) 130–7.
Prestwood TR, Asgariroozbehani R, Wu S, Agarwal SM, Logan RW, Ballon JS, Hahn MK, Freyberg Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav Brain Res. 2021 Mar 26;402:113101.
Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, MacCabe J, Rifkin L, Hultman CM. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69(6):E1–8.
Haukka JK, Suvisaari J, Lonnqvist J. Family structure and risk factors for schizophrenia: case-sibling study. BMC Psychiatry. 2004;4:41.
Sacker A, Done DJ, Crow TJ, Golding J. Antecedents of schizophrenia and affective illness. Obstetric complications. Br J Psychiatr. 1995;166(6):734–41.
Laursen TM, Munk-Olsen T, Nordentoft M, Bo Mortensen P. A comparison of selected risk factors for unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia from a danish population-based cohort. J Clin Psychiatr. 2007;68(11):1673–81.
Buizer-Voskamp JE, Laan W, Staal WG, Hennekam EAM, Aukes MF, Termorshuizen F, Kahn RS, Boks MPM, Ophoff RA. Paternal age and psychiatric disorders: Findings from a Dutch population registry. Schizophr Res. 2011;129(2–3):128–32.
Talati A, Bao Y, Kaufman J, Shen L, Schaefer CA, Brown AS. Maternal smoking during pregnancy and bipolar disorder in offspring. Am J Psychiatr. 2013;170(10):1178–85.
rown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, Perrin M, Gorman JM, Susser ES. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatr. 2004;161(5):889–95.
Werner S, Malaspina D, Rabinowitz J. Socioeconomic status at birth is associated with risk of schizophrenia: population-based multilevel study. Schizophr Bull. 2007;33(6):1373–8.
chiffman J, LaBrie J, Carter J, Cannon T, Schulsinger F, Parnas J, Mednick S. Perception of parent–child relationships in high-risk families, and adult schizophrenia outcome of offspring. J Psychiatr Res. 2002;36(1):41–7.
Walker E, Hoppes E, Emory E, Mednick S, Schulsinger F. Environmental factors related to schizophrenia in psychophysiologically labile high-risk males. J Abnorm Psychol. 1981;90(4):313–20.
Cornblatt BA, Obuchowski M, Roberts S, Pollack S, Erlenmeyer–Kimling L. Cognitive and behavioral precursors of schizophrenia. Dev Psychopathol. 1999;11(03):487–508.
Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. (2011) 70:663–71.
Pae CU, Yoon CH, Kim TS, Kim JJ, Park SH, Lee CU, et al. Antipsychotic treatment may alter T-helper (TH) 2 arm cytokines. Int Immunopharmacol. 2006;6:666–671.
Frommberger UH, Bauer J, Haselbauer P, Fräulin A, Riemann D, Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: Comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci. 1997;247:228–233.
Desplat-Jego S, Johanet C, Escande A, Goetz J, Fabien N, Olsson N, et al. Update on Anti-Saccharomyces cerevisiae antibodies, anti-nuclear associated anti-neutrophil antibodies and antibodies to exocrine pancreas detected by indirect immunofluorescence as biomarkers in chronic inflammatory bowel diseases: results of a multicenter study. World Journal of Gastroenterology : WJG. 2007;13(16):2312–8.
Severance EG, Alaedini A, Yang S, Halling M, Gressitt KL, Stallings CR, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophrenia Research. 2012;138(1):48–53.
Severance EG, Alaedini A, Yang S, Halling M, Gressitt KL, Stallings CR, et al.. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res. (2012) 138:48–53.
Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al.. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res. (2013) 148:130–7.
Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al.. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res. (2018) 197:470–7.
Benros ME, Mortensen PB, Nielsen PR. Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of Danish National Registers. Schizophr Bull. (2013) 40:1526–32.
Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. (2012) 139:161–8.
Schwarz E, Maukonen J, Hyytiainen T, Kieseppa T, Oresic M, Sabunciyan S, et al.. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res. (2018) 192:398–403.
Davey KJ, O'Mahony SM, Schellekens H, O'Sullivan O, Bienenstock J, Cotter PD, et al.. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology. (2012). 221:155–
Morgan AP, Crowley JJ, Nonneman RJ, Quackenbush CR, Miller CN, Ryan AK, et al.. The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. PLoS ONE. (2014) 9:e115225.
Flowers SA, Baxter NT, Ward KM, Kraal AZ, McInnis MG, Schmidt TM, et al. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy. (2019) 39:161–70.
Bahr SM, Tyler BC, Wooldridge N, Butcher BD, Burns TL, Burns TL, et al.. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Transl Psychiatry. (2015) 5:e652.
Harley M., Kelleher I., Clarke M., Lynch F., Arseneault L., Connor D., et al. (2010). Cannabis use and childhood trauma interact additively to increase the risk of psychotic symptoms in adolescence. Psychol. Med. 40 1627–1634.
Martin A. R., Kanai M., Kamatani Y., Okada Y., Neale B. M., Daly M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51 584–591.
Robinson N, Bergen SE. Environmental Risk Factors for Schizophrenia and Bipolar Disorder and Their Relationship to Genetic Risk: Current Knowledge and Future Directions. Front Genet. 2021 Jun 28;12:686666.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kinga Brzuszkiewicz, Gracjan Rudziński, Borys Łozowski, Przemysław Raczkiewicz, Natalia Kusak, Ewelina Soroka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 593
Number of citations: 0