Effects of creatine supplementation on brain in the healthy population
DOI:
https://doi.org/10.12775/JEHS.2023.13.04.017Keywords
cerebral energy metabolism, traumatic brain injury, creatine supplementationAbstract
Introduction and purpose: Creatine supplementation is playing an increasingly important role not only in sports, but is beneficial in the context of brain health (e.g., cognitive processing, brain function and recovery from injury). This is a growing field of research, and the purpose of this brief review is to provide an update on the effects of creatine supplementation on brain health in healthy people.
Description of the state of knowledge: Creatine, is an organic compound produced mainly by the liver and kidneys. From the liver, kidneys and gastrointestinal tract, creatine enters through the bloodstream into skeletal muscle, where a total of about 95% of the body's total creatine is stored. It is stored in the muscles, heart and brain.
Summary: There is potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by creatine deficits in the brain, which can be triggered by acute stress factors (e.g., exercise, lack of sleep) or chronic, pathological conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer's disease). People with depression, the elderly, people with diseases associated with certain genetic defects (where creatine production and storage in the brain is impaired) are just some of the groups of people in whom creatine supplementation may be helpful. More research is needed to determine the clinical impact of long-term creatine supplementation dosing strategies on brain function and health.
References
Dolan, E.; Gualano, B.; Rawson, E.S. Beyond muscle: The effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur. J. Sport Sci. 2019, 19, 1–14.
Rae, C.D.; Bröer, S. Creatine as a booster for human brain function. How might it work? Neurochem. Int. 2015, 89, 249–259.
Gualano, B.; Roschel, H.; Lancha, A.H.; Brightbill, C.E.; Rawson, E.S.; Junior, A.H.L. In sickness and in health: The widespread application of creatine supplementation. Amino Acids 2011, 43, 519–529.
Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18.
Paddon-Jones, D.; Borsheim, E.; Wolfe, R.R. Potential ergogenic effects of arginine and creatine supplementation. J. Nutr. 2004, 134, 2888S–2894S.
Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791.
da Silva, R.P.; Clow, K.; Brosnan, J.T.; Brosnan, M.E. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. Br. J. Nutr. 2014, 111, 571–577.
da Silva, R.P.; Nissim, I.; Brosnan, M.E.; Brosnan, J.T. Creatine synthesis: Hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E256–E261.
Jager, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids 2011, 40, 1369–1383.
Rae, C.D.; Bröer, S. Creatine as a booster for human brain function. How might it work? Neurochem. Int. 2015, 89, 249–259.
Bertin, M.; Pomponi, S.M.; Kokuhuta, C.; Iwasaki, N.; Suzuki, T.; Ellington, W.R. Origin of the genes for the isoforms of creatine kinase. Gene 2007, 392, 273–282.
Sahlin, K.; Harris, R.C. The creatine kinase reaction: A simple reaction with functional complexity. Amino Acids 2011, 40, 1363–1367.
Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 2007, 4, 6.
Walker, J.B. Creatine: Biosynthesis, regulation, and function. Adv. Enzymol. Relat. Areas Mol. Biol. 1979, 50, 177–242.
Braissant, O.; Bachmann, C.; Henry, H. Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Alzheimer’s Dis. 2007, 46, 67–81.
Solis, M.Y.; Painelli, V.D.S.; Artioli, G.G.; Roschel, H.; Otaduy, M.C.; Gualano, B. Brain creatine depletion in vegetarians? A cross-sectional 1H-magnetic resonance spectroscopy (1H-MRS) study. Br. J. Nutr. 2013, 111, 1272–1274.
Stockler-Ipsiroglu, S.; Van Karnebeek, C.D.M.; Longo, N.; Korenke, G.C.; Mercimek-Mahmutoglu, S.; Marquart, I.; Barshop, B.; Grolik, C.; Schlune, A.; Angle, B.; et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol. Genet. Metab. 2014, 111, 16–25.
Laakso, M.P.; Hiltunen, Y.; Könönen, M.; Kivipelto, M.; Koivisto, A.; Hallikainen, M.; Soininen, H. Decreased brain creatine levels in elderly apolipoprotein E epsilon 4 carriers. J. Neural Transm. 2003, 110, 267–275. [CrossRef] [PubMed] 24. Solis, M.Y.; Artioli, G.G.; Otaduy, M.C.G.; Leite, C.D.C.; Arruda, W.; Veiga, R.R.; Gualano, B. Effect of age, diet, and tissue type on PCr response to creatine supplementation. J. Appl. Physiol. 2017, 123, 407–414.
Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 1–18.
Rawson E., Venezia A.: Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids. 2011, May, 40, 5, 1349–1362. doi: 10.1007/s00726-011-0855-9.
Morawska-Staszak, K. (2012). Wpływ suplementacji kreatyną na całkowity potencjał antyoksydacyjny oraz wydolność psychofizyczną u pacjentów z przewlekłymi schorzeniami wątroby (Doctoral dissertation, Rozprawa doktorska. Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu, Poznań 2012 r).
Benzi G, Ceci A. Creatine as nutritional supplementation and medicinal product. J Sports Med Phys Fitness 2001; 41: 1-10.
Kreider RB, Melton C, Rasmussen CJ i wsp. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem 2003; 244: 95-104.
Braissant O, Henry H, Villard AM i wsp. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol 2005; 26: 5-9.
Morawska-Staszak K.: Wpływ suplementacji kreatyną na całkowity potencjał antyoksydacyjny oraz wydolność psychofizyczną u pacjentów z przewlekłymi schorzeniami wątroby. Rozprawa doktorska. Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu, Poznań 2012 r.
Lyoo, I. K., Yoon, S., Kim, T., Hwang, J., Kim, J. E., Won, W.,Renshaw, P. F. (2012). A Randomized, Double-Blind Placebo-Controlled Trial of Oral Creatine Monohydrate Augmentation for Enhanced Response to a Selective Serotonin Reuptake Inhibitor in Women With Major Depressive Disorder. American Journal of Psychiatry, 169(9), 937-945.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tomasz Swatko, Monika Blicharz, Marta Czubala, Diana Bartosik-Zielińska, Agnieszka Blicharz, Magdalena Bartosik
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 4528
Number of citations: 0