Is Alzhezimer’s disease a New Type Diabetes? Crosstalk between two serious disorders: review
DOI:
https://doi.org/10.12775/JEHS.2023.13.03.017Keywords
Diabetes, Alzheimer's disease, oxidative stress, metabolic disorders, cognitive disorders, dementiaAbstract
Introduction and purpose: More and more reports suggest that diabetes plays an important role in the pathogenesis of Alzheimer's disease (AD). Understanding this link may provide a new approach to modulating the onset and progression of sporadic AD cases. The aim of the study is to present the current state of knowledge on the basic mechanisms and factors influencing the development of AD in patients with type 2 diabetes in the context of clinical practice.
State of knowledge: It is estimated that up to 80% of Alzheimer's patients have glucose intolerance or diabetes. Impaired insulin signaling can lead to abnormal processing and accumulation of beta-amyloid protein, which can result in memory deficits and cognitive decline. Insulin deficiency can also cause over-activity of the GSK3 enzyme, leading to tau hyperphosphorylation and senile plaque accumulation. Diabetes can also cause fibrotic changes in cerebral vessels, disrupting brain metabolism and potentially leading to hippocampus atrophy. The release of cytokines during the metabolic syndrome can also cause oxidative stress and neuroinflammation, which may contribute to neuronal atrophy. It has been reported that healthy diet, physical exercises and prevention of metabolic diseases may reduce the incidence of AD.
Conclusions: Epidemiological data and pathophysiological studies indicate a significant relationship between these diseases that AD is sometimes called Type 3 diabetes. Early detection of hyperglycemia and its proper management, may be crucial in the context of the clinical prevention of dementia diseases. It is essential to pay attention to the cognitive abilities of patients with metabolic diseases.
References
Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med 2011;15:1807–21. https://doi.org/10.1111/j.1582-4934.2011.01318.x.
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004;53:474–81. https://doi.org/10.2337/diabetes.53.2.474.
Kroner Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Altern Med Rev 2009;14:373–9.
Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 2015;47:e149. https://doi.org/10.1038/emm.2015.3.
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 2015;16:660–71. https://doi.org/10.1038/nrn4019.
Xu W, Caracciolo B, Wang H-X, Winblad B, Bäckman L, Qiu C, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 2010;59:2928–35. https://doi.org/10.2337/db10-0539.
Williamson R, McNeilly A, Sutherland C. Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol 2012;84:737–45. https://doi.org/10.1016/j.bcp.2012.05.007.
Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 2005;8:247–68. https://doi.org/10.3233/jad-2005-8304.
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353–6. https://doi.org/10.1126/science.1072994.
Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J-C, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 2012;122:1339–53. https://doi.org/10.1172/JCI57256.
Morales-Corraliza J, Wong H, Mazzella MJ, Che S, Lee SH, Petkova E, et al. Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-β Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci 2016;36:4248–58. https://doi.org/10.1523/JNEUROSCI.4640-14.2016.
Swerdlow RH. Alzheimer’s Disease Pathologic Cascades: Who Comes First, What Drives What. Neurotox Res 2012;22:182–94. https://doi.org/10.1007/s12640-011-9272-9.
Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, et al. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest 2015;125:2463–7. https://doi.org/10.1172/JCI79742.
Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms Underlying Insulin Deficiency-Induced Acceleration of β-Amyloidosis in a Mouse Model of Alzheimer’s Disease. PLoS One 2012;7:e32792. https://doi.org/10.1371/journal.pone.0032792.
Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R. Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology 2013;154:375–87. https://doi.org/10.1210/en.2012-1661.
Fonteh AN, Cipolla M, Chiang J, Arakaki X, Harrington MG. Human Cerebrospinal Fluid Fatty Acid Levels Differ between Supernatant Fluid and Brain-Derived Nanoparticle Fractions, and Are Altered in Alzheimer’s Disease. PLoS One 2014;9:e100519. https://doi.org/10.1371/journal.pone.0100519.
Hölscher C. Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer’s Disease. Front Aging Neurosci 2019;11:88. https://doi.org/10.3389/fnagi.2019.00088.
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Van Giau V. Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. IJMS 2020;21:3165. https://doi.org/10.3390/ijms21093165.
Hsieh C-F, Liu C-K, Lee C-T, Yu L-E, Wang J-Y. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 2019;9:840. https://doi.org/10.1038/s41598-018-37215-0.
Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 2017;24:76. https://doi.org/10.1186/s12929-017-0379-z.
Luca M, Di Mauro M, Di Mauro M, Luca A. Gut Microbiota in Alzheimer’s Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Medicine and Cellular Longevity 2019;2019:1–10. https://doi.org/10.1155/2019/4730539.
Xu J, Xu C, Chen X, Cai X, Yang S, Sheng Y, et al. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition 2014;30:584–9. https://doi.org/10.1016/j.nut.2013.10.018.
Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease crosstalk. Neuroscience & Biobehavioral Reviews 2016;64:272–87. https://doi.org/10.1016/j.neubiorev.2016.03.005.
Kalaria RN. Neurodegenerative disease: Diabetes, microvascular pathology and Alzheimer disease. Nat Rev Neurol 2009;5:305–6. https://doi.org/10.1038/nrneurol.2009.72.
Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis 2007;193:328–34. https://doi.org/10.1016/j.atherosclerosis.2006.09.016.
Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995;96:1395–403. https://doi.org/10.1172/JCI118175.
Michalicova A, Majerova P, Kovac A. Tau Protein and Its Role in Blood–Brain Barrier Dysfunction. Front Mol Neurosci 2020;13:570045. https://doi.org/10.3389/fnmol.2020.570045.
Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 2003;111:1373–80. https://doi.org/10.1172/JCI15211.
Sasaki N, Itakura Y, Toyoda M. Gangliosides Contribute to Vascular Insulin Resistance. IJMS 2019;20:1819. https://doi.org/10.3390/ijms20081819.
Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer’s Disease. CN 2021;19:908–24. https://doi.org/10.2174/1570159X18666201111104509.
Chiu S-L, Chen C-M, Cline HT. Insulin Receptor Signaling Regulates Synapse Number, Dendritic Plasticity and Circuit Function in Vivo. Neuron 2008;58:708–19. https://doi.org/10.1016/j.neuron.2008.04.014.
Lee S-H, Zabolotny JM, Huang H, Lee H, Kim Y-B. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Mol Metab 2016;5:589–601. https://doi.org/10.1016/j.molmet.2016.06.011.
Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 2007;53:703–17. https://doi.org/10.1016/j.neuron.2007.01.029.
Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci 2016;16:162–79. https://doi.org/10.17305/bjbms.2016.919.
Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong C-X. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 2008;582:359–64. https://doi.org/10.1016/j.febslet.2007.12.035.
Barić A, Dobrivojević Radmilović M. Microglia and bradykinin cross talk in poststroke cognitive impairment in diabetes. American Journal of Physiology-Cell Physiology 2021;320:C613–8. https://doi.org/10.1152/ajpcell.00402.2020.
Zhang Y-W, Zhang J-Q, Liu C, Wei P, Zhang X, Yuan Q-Y, et al. Memory dysfunction in type 2 diabetes mellitus correlates with reduced hippocampal CA1 and subiculum volumes. Chin Med J (Engl) 2015;128:465–71. https://doi.org/10.4103/0366-6999.151082.
Hempel R, Onopa R, Convit A. Type 2 diabetes affects hippocampus volume differentially in men and women. Diabetes Metab Res Rev 2012;28:76–83. https://doi.org/10.1002/dmrr.1230.
Folch J, Olloquequi J, Ettcheto M, Busquets O, Sánchez-López E, Cano A, et al. The Involvement of Peripheral and Brain Insulin Resistance in Late Onset Alzheimer’s Dementia. Front Aging Neurosci 2019;11:236. https://doi.org/10.3389/fnagi.2019.00236.
Hallschmid M. Intranasal Insulin for Alzheimer’s Disease. CNS Drugs 2021;35:21–37. https://doi.org/10.1007/s40263-020-00781-x.
Moran C, Beare R, Wang W, Callisaya M, Srikanth V, for the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Type 2 diabetes mellitus, brain atrophy, and cognitive decline. Neurology 2019;92:e823–30. https://doi.org/10.1212/WNL.0000000000006955.
Sato N, Morishita R. Brain Alterations and Clinical Symptoms of Dementia in Diabetes: Aβ/Tau-Dependent and Independent Mechanisms. Front Endocrinol (Lausanne) 2014;5:143. https://doi.org/10.3389/fendo.2014.00143.
Kerti L, Witte AV, Winkler A, Grittner U, Rujescu D, Flöel A. Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology 2013;81:1746–52. https://doi.org/10.1212/01.wnl.0000435561.00234.ee.
Zhao N, Liu C-C, Ingelgom AJV, Martens YA, Linares C, Knight JA, et al. Apolipoprotein E4 Impairs Neuronal Insulin Signaling by Trapping Insulin Receptor in the Endosomes. Neuron 2017;96:115-129.e5. https://doi.org/10.1016/j.neuron.2017.09.003.
Zhang Y, Huang N, Yan F, Jin H, Zhou S, Shi J, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behavioural Brain Research 2018;339:57–65. https://doi.org/10.1016/j.bbr.2017.11.015.
Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol 2015;185:834–46. https://doi.org/10.1016/j.ajpath.2014.11.016.
Yu J-T, Xu W, Tan C-C, Andrieu S, Suckling J, Evangelou E, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 2020;91:1201–9. https://doi.org/10.1136/jnnp-2019-321913.
Coley N, Vaurs C, Andrieu S. Nutrition and Cognition in Aging Adults. Clin Geriatr Med 2015;31:453–64. https://doi.org/10.1016/j.cger.2015.04.008.
Lilamand M, Porte B, Cognat E, Hugon J, Mouton-Liger F, Paquet C. Are ketogenic diets promising for Alzheimer’s disease? A translational review. Alz Res Therapy 2020;12:42. https://doi.org/10.1186/s13195-020-00615-4.
Asbaghi O, Fouladvand F, Gonzalez MJ, Aghamohammadi V, Choghakhori R, Abbasnezhad A. Effect of Green Tea on Anthropometric Indices and Body Composition in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Complement Med Res 2021;28:244–51. https://doi.org/10.1159/000511665.
Thota RN, Rosato JI, Dias CB, Burrows TL, Martins RN, Garg ML. Dietary Supplementation with Curcumin Reduce Circulating Levels of Glycogen Synthase Kinase-3β and Islet Amyloid Polypeptide in Adults with High Risk of Type 2 Diabetes and Alzheimer’s Disease. Nutrients 2020;12:1032. https://doi.org/10.3390/nu12041032.
Zuin M, Roncon L, Passaro A, Cervellati C, Zuliani G. Metabolic syndrome and the risk of late onset Alzheimer’s disease: An updated review and meta-analysis. Nutr Metab Cardiovasc Dis 2021;31:2244–52. https://doi.org/10.1016/j.numecd.2021.03.020.
Tolppanen A-M, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis 2014;38:201–9. https://doi.org/10.3233/JAD-130698.
Singh-Manoux A, Dugravot A, Shipley M, Brunner EJ, Elbaz A, Sabia S, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement 2018;14:178–86. https://doi.org/10.1016/j.jalz.2017.06.2637.
Kivimäki M, Luukkonen R, Batty GD, Ferrie JE, Pentti J, Nyberg ST, et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimers Dement 2018;14:601–9. https://doi.org/10.1016/j.jalz.2017.09.016.
Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 2005;62:1556–60. https://doi.org/10.1001/archneur.62.10.1556.
Chuang Y-F, An Y, Bilgel M, Wong DF, Troncoso JC, O’Brien RJ, et al. Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol Psychiatry 2016;21:910–5. https://doi.org/10.1038/mp.2015.129.
Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 2011;68:51–7. https://doi.org/10.1001/archneurol.2010.225.
Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Research Reviews 2020;62:101108. https://doi.org/10.1016/j.arr.2020.101108.
Kishimoto H, Ohara T, Hata J, Ninomiya T, Yoshida D, Mukai N, et al. The long-term association between physical activity and risk of dementia in the community: the Hisayama Study. Eur J Epidemiol 2016;31:267–74. https://doi.org/10.1007/s10654-016-0125-y.
Tan ZS, Spartano NL, Beiser AS, DeCarli C, Auerbach SH, Vasan RS, et al. Physical Activity, Brain Volume, and Dementia Risk: The Framingham Study. J Gerontol A Biol Sci Med Sci 2017;72:789–95. https://doi.org/10.1093/gerona/glw130.
Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L, Mattson MP. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. J Neurochem 2017;142:286–96. https://doi.org/10.1111/jnc.14034.
Xu W, Wang HF, Wan Y, Tan C-C, Yu J-T, Tan L. Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open 2017;7:e014706. https://doi.org/10.1136/bmjopen-2016-014706.
Shin BK, Kang S, Kim DS, Park S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 2018;243:334–43. https://doi.org/10.1177/1535370217751610.
Proserpio P, Arnaldi D, Nobili F, Nobili L. Integrating Sleep and Alzheimer’s Disease Pathophysiology: Hints for Sleep Disorders Management. J Alzheimers Dis 2018;63:871–86. https://doi.org/10.3233/JAD-180041.
Ogilvie RP, Patel SR. The Epidemiology of Sleep and Diabetes. Curr Diab Rep 2018;18:82. https://doi.org/10.1007/s11892-018-1055-8.
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem Res 2015;40:2583–99. https://doi.org/10.1007/s11064-015-1581-6.
McEwen BS, Karatsoreos IN. Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load. Sleep Med Clin 2015;10:1–10. https://doi.org/10.1016/j.jsmc.2014.11.007.
Durazzo TC, Mattsson N, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement 2014;10:S122-145. https://doi.org/10.1016/j.jalz.2014.04.009.
Akter S, Goto A, Mizoue T. Smoking and the risk of type 2 diabetes in Japan: A systematic review and meta-analysis. J Epidemiol 2017;27:553–61. https://doi.org/10.1016/j.je.2016.12.017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maciej Dobosz, Gracjan Rudziński, Zuzanna Chilimoniuk, Piotr Więsyk, Natalia Kusak, Aleksandra Chałupnik
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 374
Number of citations: 0