Pathological conditions associated with hyperhomocysteinemia
DOI:
https://doi.org/10.12775/JEHS.2023.13.02.032Keywords
homocysteine, hyperhomocysteinemia, pathogenesis, diseases, thrombosisAbstract
The effect of excessive homocysteine concentration in human blood, on the cells and tissues of the body is very complex. The effect associated with the induction of oxidative stress and disruption of the biochemical balance of the intracellular space has a negative impact on the physiology of cells and the regularity of their functioning by changing their metabolism. This may result in the formation and development of atherosclerotic lesions, disorders in the coagulation system leading to thrombosis and, consequently, embolism, pathological changes
in the central nervous system, which may translate into the formation of mental disorders, neurodegenerative diseases, depression and dementia. In addition, hyperhomocysteinemia affects the possible pathologies
and complications of pregnancy associated with them, as well as the implications for fetal development
if its aforementioned condition. The work presented here outlines the mechanisms that determine the formation of the aforementioned disease entities as a result of too much homocysteine and the clinical significance of these relationships. With the development of science and the increasing number of publications related to the impact
of hyperhomocysteinemia on diverse disease entities, there are voices suggesting the inclusion of studies
on homocysteine concentrations in body fluids in screening as risk factors for the development of these diseases or using them for their control and treatment.
References
Cattaneo M. (2001). Hyperhomocysteinemia and thrombosis. Lipids, 36 Suppl, S13–S26. https://doi.org/10.1007/s11745-001-0677-9
Nygård, O., Vollset, S. E., Refsum, H., Stensvold, I., Tverdal, A., Nordrehaug, J. E., Ueland, M., & Kvåle, G. (1995). Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA, 274(19), 1526–1533. https://doi.org/10.1001/jama.1995.03530190040032
Lussier-Cacan, S., Xhignesse, M., Piolot, A., Selhub, J., Davignon, J., & Genest, J., Jr (1996). Plasma total homocysteine in healthy subjects: sex-specific relation with biological traits. The American journal of clinical nutrition, 64(4), 587–593. https://doi.org/10.1093/ajcn/64.4.587
Selhub, J., Jacques, P. F., Wilson, P. W., Rush, D., & Rosenberg, I. H. (1993). Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA, 270(22), 2693–2698. https://doi.org/10.1001/jama.1993.03510220049033
Seshadri, S., Beiser, A., Selhub, J., Jacques, P. F., Rosenberg, I. H., D'Agostino, R. B., Wilson, P. W., & Wolf, P. A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. The New England journal of medicine, 346(7), 476–483. https://doi.org/10.1056/NEJMoa011613
Finkelstein J. D. (1990). Methionine metabolism in mammals. The Journal of nutritional biochemistry, 1(5), 228–237. https://doi.org/10.1016/0955-2863(90)90070-2
Storch, K. J., Wagner, D. A., Burke, J. F., & Young, V. R. (1990). [1-13C; methyl-2H3]methionine kinetics in humans: methionine conservation and cystine sparing. The American journal of physiology, 258(5 Pt 1), E790–E798. https://doi.org/10.1152/ajpendo.1990.258.5.E790
Carmel, R., Green, R., Jacobsen, D. W., Rasmussen, K., Florea, M., & Azen, C. (1999). Serum cobalamin, homocysteine, and methylmalonic acid concentrations in a multiethnic elderly population: ethnic and sex differences in cobalamin and metabolite abnormalities. The American journal of clinical nutrition, 70(5), 904–910. https://doi.org/10.1093/ajcn/70.5.904
Robinson, K., Gupta, A., Dennis, V., Arheart, K., Chaudhary, D., Green, R., Vigo, P., Mayer, E. L., Selhub, J., Kutner, M., & Jacobsen, D. W. (1996). Hyperhomocysteinemia confers an independent increased risk of atherosclerosis in end-stage renal disease and is closely linked to plasma folate and pyridoxine concentrations. Circulation, 94(11), 2743–2748. https://doi.org/10.1161/01.cir.94.11.2743
Cravo, M. L., Glória, L. M., Selhub, J., Nadeau, M. R., Camilo, M. E., Resende, M. P., Cardoso, J. N., Leitão, C. N., & Mira, F. C. (1996). Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status. The American journal of clinical nutrition, 63(2), 220–224. https://doi.org/10.1093/ajcn/63.2.220
Ubbink, J. B., Vermaak, W. J., van der Merwe, A., Becker, P. J., Delport, R., & Potgieter, H. C. (1994). Vitamin requirements for the treatment of hyperhomocysteinemia in humans. The Journal of nutrition, 124(10), 1927–1933. https://doi.org/10.1093/jn/124.10.1927
Moustapha, A., Gupta, A., Robinson, K., Arheart, K., Jacobsen, D. W., Schreiber, M. J., & Dennis, V. W. (1999). Prevalence and determinants of hyperhomocysteinemia in hemodialysis and peritoneal dialysis. Kidney international, 55(4), 1470–1475. https://doi.org/10.1046/j.1523-1755.1999.00378.x
Lilien, M., Duran, M., Van Hoeck, K., Poll-The, B. T., & Schröder, C. (1999). Hyperhomocyst(e)inaemia in children with chronic renal failure. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 14(2), 366–368. https://doi.org/10.1093/ndt/14.2.366
van der Put, N. M., Steegers-Theunissen, R. P., Frosst, P., Trijbels, F. J., Eskes, T. K., van den Heuvel, L. P., Mariman, E. C., den Heyer, M., Rozen, R., & Blom, H. J. (1995). Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet (London, England), 346(8982), 1070–1071. https://doi.org/10.1016/s0140-6736(95)91743-8
Qi, Z., Hoffman, G., Kurtycz, D., & Yu, J. (2003). Prevalence of the C677T substitution of the methylenetetrahydrofolate reductase (MTHFR) gene in Wisconsin. Genetics in medicine : official journal of the American College of Medical Genetics, 5(6), 458–459. https://doi.org/10.1097/01.gim.0000095001.12570.a8
Liew, S. C., & Gupta, E. D. (2015). Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. European journal of medical genetics, 58(1), 1–10. https://doi.org/10.1016/j.ejmg.2014.10.004
de Bree , A., Verschuren, W. M., Blom, H. J., & Kromhout, D. (2001). Lifestyle factors and plasma homocysteine concentrations in a general population sample. American journal of epidemiology, 154(2), 150–154. https://doi.org/10.1093/aje/154.2.150
van den Kommer, T. N., Dik, M. G., Comijs, H. C., Jonker, C., & Deeg, D. J. (2010). Homocysteine and inflammation: predictors of cognitive decline in older persons?. Neurobiology of aging, 31(10), 1700–1709. https://doi.org/10.1016/j.neurobiolaging.2008.09.009
Fermo, I., Vigano' D'Angelo, S., Paroni, R., Mazzola, G., Calori, G., & D'Angelo, A. (1995). Prevalence of moderate hyperhomocysteinemia in patients with early-onset venous and arterial occlusive disease. Annals of internal medicine, 123(10), 747–753. https://doi.org/10.7326/0003-4819-123-10-199511150-00002
Evans, R. W., Shaten, B. J., Hempel, J. D., Cutler, J. A., & Kuller, L. H. (1997). Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arteriosclerosis, thrombosis, and vascular biology, 17(10), 1947–1953. https://doi.org/10.1161/01.atv.17.10.1947
Verhoef, P., Hennekens, C. H., Malinow, M. R., Kok, F. J., Willett, W. C., & Stampfer, M. J. (1994). A prospective study of plasma homocyst(e)ine and risk of ischemic stroke. Stroke, 25(10), 1924–1930. https://doi.org/10.1161/01.str.25.10.1924
Zou, C. G., Zhao, Y. S., Gao, S. Y., Li, S. D., Cao, X. Z., Zhang, M., & Zhang, K. Q. (2010). Homocysteine promotes proliferation and activation of microglia. Neurobiology of aging, 31(12), 2069–2079. https://doi.org/10.1016/j.neurobiolaging.2008.11.007
Zylberstein, D. E., Lissner, L., Björkelund, C., Mehlig, K., Thelle, D. S., Gustafson, D., Ostling, S., Waern, M., Guo, X., & Skoog, I. (2011). Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiology of aging, 32(3), 380–386. https://doi.org/10.1016/j.neurobiolaging.2009.02.024
Seshadri, S., Wolf, P. A., Beiser, A. S., Selhub, J., Au, R., Jacques, P. F., Yoshita, M., Rosenberg, I. H., D'Agostino, R. B., & DeCarli, C. (2008). Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Archives of neurology, 65(5), 642–649. https://doi.org/10.1001/archneur.65.5.642
Jamison, R. L., Hartigan, P., Kaufman, J. S., Goldfarb, D. S., Warren, S. R., Guarino, P. D., Gaziano, J. M., & Veterans Affairs Site Investigators (2007). Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA, 298(10), 1163–1170. https://doi.org/10.1001/jama.298.10.1163
Stampfer, M. J., & Willett, W. C. (1993). Homocysteine and marginal vitamin deficiency. The importance of adequate vitamin intake. JAMA, 270(22), 2726–2727.
den Heijer, M., Koster, T., Blom, H. J., Bos, G. M., Briet, E., Reitsma, P. H., Vandenbroucke, J. P., & Rosendaal, F. R. (1996). Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. The New England journal of medicine, 334(12), 759–762. https://doi.org/10.1056/NEJM199603213341203
Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., Porcellini, E., & Licastro, F. (2005). Homocysteine and folate as risk factors for dementia and Alzheimer disease. The American journal of clinical nutrition, 82(3), 636–643. https://doi.org/10.1093/ajcn.82.3.636
Rosenblatt, D. S., & Whitehead, V. M. (1999). Cobalamin and folate deficiency: acquired and hereditary disorders in children. Seminars in hematology, 36(1), 19–34.
Walker, M. C., Smith, G. N., Perkins, S. L., Keely, E. J., & Garner, P. R. (1999). Changes in homocysteine levels during normal pregnancy. American journal of obstetrics and gynecology, 180(3 Pt 1), 660–664. https://doi.org/10.1016/s0002-9378(99)70269-3
Dai, C., Fei, Y., Li, J., Shi, Y., & Yang, X. (2021). A Novel Review of Homocysteine and Pregnancy Complications. BioMed research international, 2021, 6652231. https://doi.org/10.1155/2021/6652231
Maron, B. A., & Loscalzo, J. (2009). The treatment of hyperhomocysteinemia. Annual review of medicine, 60, 39–54. https://doi.org/10.1146/annurev.med.60.041807.123308
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mateusz Skrzypek, Paweł Warzyszak, Róża Małek, Maria Milczek, Wojciech Żołyniak, Mikołaj Tomasik, Izabela Hawranik, Szymon Niski, Ziemowit Żaba, Aleksandra Lisowska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 346
Number of citations: 0