Poly ADP-ribose polymerase (PARP) inhibitors - new therapeutic strategies in Acute Myeloid Leukemia: a literature review
DOI:
https://doi.org/10.12775/JEHS.2023.13.02.014Keywords
PARP inhibitor, Drug targets, Combination therapies, Acute leukemia, Acute Myeloid LeukemiaAbstract
The use of poly (ADP-ribose) polymerase (PARP) inhibitors has recently increased as a result of demonstrating their superior efficacy compared to traditional chemotherapy in various cancer subtypes in many preclinical studies and clinical trials. A better understanding of the molecular mechanisms of PARP and their underlying foci that can be used as screening markers for potential new therapeutic options would aid rational treatment strategies and improve long-term patient outcomes. The available data on acute leukemia suggest potential windows for effective treatment of PARPi in disease subgroups. In this review, we summarize the current advances in the most common PARP-based adjuvant therapies and combination strategies for the treatment of acute leukemia and discuss the future prospects and challenges of therapy with PARP inhibitors. We also discuss reports describing an increased risk of cancer treatment in patients receiving PARP inhibitors for solid tumors.
The research material were publications, the search was carried out using a combination of keywords such as: "PARP inhibitor", "acute leukemia", "therapy", "PARP clinical trials". The first step was to find relevant publications from the last 15 years. The second step was to review the publications found.
Studies have shown that PARP inhibitors play an increasing role in the treatment of leukemia. In addition, focusing research efforts on identifying the most effective drug combinations and sequences could help to further shape the role of PARPi in the treatment of acute myeloid leukemia (AML).
References
Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018 Oct;93(10):1267-1291. doi: 10.1002/ajh.25214.
Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021 Feb 22;11(2):41. doi: 10.1038/s41408-021-00425-3.
Thol F, Ganser A. Treatment of Relapsed Acute Myeloid Leukemia. Curr Treat Options Oncol. 2020 Jun 29;21(8):66. doi: 10.1007/s11864-020-00765-5.
Yang X, Wang J. Precision therapy for acute myeloid leukemia. J Hematol Oncol. 2018 Jan 5;11(1):3. doi: 10.1186/s13045-017-0543-7.
Faraoni I, Compagnone M, Lavorgna S, Angelini DF, Cencioni MT, Piras E, Panetta P, Ottone T, Dolci S, Venditti A, Graziani G, Lo-Coco F. BRCA1, PARP1 and γH2AX in acute myeloid leukemia: Role as biomarkers of response to the PARP inhibitor olaparib. Biochim Biophys Acta. 2015 Mar;1852(3):462-72. doi: 10.1016/j.bbadis.2014.12.001.
LH, Debatin KM, Orecchioni S, Bertolini F, Pelicci PG. The Combination of the PARP Inhibitor Rucaparib and 5FU Is an Effective Strategy for Treating Acute Leukemias. Mol Cancer Ther. 2015 Apr;14(4):889-98. doi: 10.1158/1535-7163.
Mego M, Cierna Z, Svetlovska D, Macak D, Machalekova K, Miskovska V, Chovanec M, Usakova V, Obertova J, Babal P, Mardiak J. PARP expression in germ cell tumours. J Clin Pathol. 2013 Jul;66(7):607-12. doi: 10.1136/jclinpath-2012-201088.
Rajawat J, Shukla N, Mishra DP. Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities. Med Res Rev. 2017 Nov;37(6):1461-1491. doi: 10.1002/med.21442.
Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun. 2014 Jul 21;5:4426. doi: 10.1038/ncomms5426.
Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature. 1992 Mar 26;356(6367):356-8. doi: 10.1038/356356a0.
Langelier MF, Planck JL, Roy S, Pascal JM. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J Biol Chem. 2011 Mar 25;286(12):10690-701. doi: 10.1074/jbc.M110.202507.
Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012 Mar 1;26(5):417-32. doi: 10.1101/gad.183509.111.
Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp A, Scambia G, Leary A, Holloway RW, Gancedo MA, Fong PC, Goh JC, O'Malley DM, Armstrong DK, Garcia-Donas J, Swisher EM, Floquet A, Konecny GE, McNeish IA, Scott CL, Cameron T, Maloney L, Isaacson J, Goble S, Grace C, Harding TC, Raponi M, Sun J, Lin KK, Giordano H, Ledermann JA; ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017 Oct 28;390(10106):1949-1961. doi: 10.1016/S0140-6736(17)32440-6.
McCabe N., Turner N.C., Lord C.J., Kluzek K., Bialkowska A., Swift S., Giavara S., O’Connor M.J., Tutt A.N., Zdzienicka M.Z., et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66:8109–8115. doi: 10.1158/0008-5472.CAN-06-0140.
Romeo M, Pardo JC, Martínez-Cardús A, Martínez-Balibrea E, Quiroga V, Martínez-Román S, Solé F, Margelí M, Mesía R. Translational Research Opportunities Regarding Homologous Recombination in Ovarian Cancer. Int J Mol Sci. 2018 Oct 19;19(10):3249. doi: 10.3390/ijms19103249.
Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, Gil J, Leung AY, Ashworth A, So CW. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med. 2015 Dec;21(12):1481-90. doi: 10.1038/nm.3993.
Santos M.A., Faryabi R.B., Ergen A.V., Day A.M., Malhowski A., Canela A., Onozawa M., Lee J.E., Callen E., Gutierrez-Martinez P., et al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature. 2014;514:107–111. doi: 10.1038/nature13483.
Gaymes TJ, Mohamedali AM, Patterson M, Matto N, Smith A, Kulasekararaj A, Chelliah R, Curtin N, Farzaneh F, Shall S, Mufti GJ. Microsatellite instability induced mutations in DNA repair genes CtIP and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase inhibitors in myeloid malignancies. Haematologica. 2013 Sep;98(9):1397-406. doi: 10.3324/haematol.2012.079251.
Pratz KW, Koh BD, Patel AG, Flatten KS, Poh W, Herman JG, Dilley R, Harrell MI, Smith BD, Karp JE, Swisher EM, McDevitt MA, Kaufmann SH. Poly (ADP-Ribose) Polymerase Inhibitor Hypersensitivity in Aggressive Myeloproliferative Neoplasms. Clin Cancer Res. 2016 Aug 1;22(15):3894-902. doi: 10.1158/1078-0432.CCR-15-2351.
Mesa RA, Tefferi A, Lasho TS, Loegering D, McClure RF, Powell HL, Dai NT, Steensma DP, Kaufmann SH. Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia. Leukemia. 2006 Oct;20(10):1800-8. doi: 10.1038/sj.leu.2404338.
Mufti G., Estey E., Popat R., Mattison R., Menne T., Azar J., Bloor A., Gaymes T., Khwaja A., Juckett M. Results of a phase 1 study of BMN 673, a potent and specific PARP-1/2 inhibitor, in patients with advanced hematological malignancies; Proceedings of the 19th Congress of the European Hematology Association; Milan, Italy. 12–15 June 2014; pp. 33–34.
Gojo I, Beumer JH, Pratz KW, McDevitt MA, Baer MR, Blackford AL, Smith BD, Gore SD, Carraway HE, Showel MM, Levis MJ, Dezern AE, Gladstone DE, Ji JJ, Wang L, Kinders RJ, Pouquet M, Ali-Walbi I, Rudek MA, Poh W, Herman JG, Karnitz LM, Kaufmann SH, Chen A, Karp JE. A Phase 1 Study of the PARP Inhibitor Veliparib in Combination with Temozolomide in Acute Myeloid Leukemia. Clin Cancer Res. 2017 Feb 1;23(3):697-706. doi: 10.1158/1078-0432.CCR-16-0984.
Pratz KW, Rudek MA, Gojo I, Litzow MR, McDevitt MA, Ji J, Karnitz LM, Herman JG, Kinders RJ, Smith BD, Gore SD, Carraway HE, Showel MM, Gladstone DE, Levis MJ, Tsai HL, Rosner G, Chen A, Kaufmann SH, Karp JE. A Phase I Study of Topotecan, Carboplatin and the PARP Inhibitor Veliparib in Acute Leukemias, Aggressive Myeloproliferative Neoplasms, and Chronic Myelomonocytic Leukemia. Clin Cancer Res. 2017 Feb 15;23(4):899-907. doi: 10.1158/1078-0432.CCR-16-1274.
Skelding KA, Lincz LF. PARP Inhibitors and Haematological Malignancies-Friend or Foe? Cancers (Basel). 2021 Oct 23;13(21):5328. doi: 10.3390/cancers13215328.
Higgins A, Shah MV. Genetic and Genomic Landscape of Secondary and Therapy-Related Acute Myeloid Leukemia. Genes (Basel). 2020 Jul 6;11(7):749. doi: 10.3390/genes11070749.
Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, Tucker MA, Curtis RE. Association of Chemotherapy for Solid Tumors With Development of Therapy-Related Myelodysplastic Syndrome or Acute Myeloid Leukemia in the Modern Era. JAMA Oncol. 2019 Mar 1;5(3):318-325. doi: 10.1001/jamaoncol.2018.5625
Morice P.M., Leary A., Dolladille C., Chrétien B., Poulain L., González-Martín A., Moore K., O’Reilly E.M., Ray-Coquard I., Alexandre J. Myelodysplastic syndrome and acute myeloid leukaemia in patients treated with PARP inhibitors: A safety meta-analysis of randomised controlled trials and a retrospective study of the WHO pharmacovigilance database. Lancet Haematol. 2021;8:e122–e134. doi: 10.1016/S2352-3026(20)30360-4.
Kayser S., Doehner K., Krauter J., Koehne C.-H., Horst H.A., Held G., von Lilienfeld-Toal M., Wilhelm S., Kuendgen A., Goetze K. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117:2137–2145. doi: 10.1182/blood-2010-08-301713.
Wethington S.L., Wahner-Hendrickson A.E., Swisher E.M., Kaufmann S.H., Karlan B.Y., Fader A.N., Dowdy S.C. PARP inhibitor maintenance for primary ovarian cancer—A missed opportunity for precision medicine. Gynecol. Oncol. 2021;163:11–13. doi: 10.1016/j.ygyno.2021.08.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Emilia Nowicka, Michał Obel, Kinga Panuciak, Angelika Mastalerczyk, Kamila Czyżak, Jan Lejman, Karolina Makowska, Wiktor Wiśniewski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 302
Number of citations: 0