Ketogenic diet as a tool in the treatment of diseases
DOI:
https://doi.org/10.12775/JEHS.2022.12.12.031Keywords
ketogenic diet, type 2 diabetes, neuroinflammation, drug-resistant epilepsy, NAFLDAbstract
Abstract
Introduction and purpose: Ketogenic diet (KD) is a form of nutrition based on usage of ketone bodies, received from transformation of consumed fats as a main source of energy. Advantages of this type of metabolism are used in treatment of various diseases. Our purpose is to sum up and present what we know about its usage, as a therapeutic tool, so far.
Description of the state of knowledge: The use of ketone bodies, instead of glucose, as a main source of energy is more efficient, reduces oxidative stress and inflammation. Furthermore, it modulates gut microbiota. KD is used in the treatment of drug-resistant epilepsy in children and is proved to be useful in the treatment of type 2 diabetes. It can improve health of patients with non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases and psychiatric diseases. The usage in other areas is still under research. It is also necessary to take into consideration adverse effects of KD such as an increase in level of LDL-cholesterol and a potential lack of some macro- and microelements. Additionaly, maintaining the diet seems to be difficult, therefore, there is no enough data to fully describe its impact on human health in long-term perspective.
Conclusions: The findings presented in this paper suggest that a ketogenic diet can constructively supplement the treatment of drug-resistant epilepsy in children and aid the treatment of type 2 diabetes. Regarding diseases associated with oxidative stress and inflammation, the reviewed data indicates that KD could be of use. However, KD is not recommended to be routinely ordered before further studies have substantiated and observable effect.
References
Wilder R. The effects of ketonemia on the course of epilepsy. InMayo Clin Proc. 1921;2:307–308.
Bolla AM, Caretto A, Laurenzi A, Scavini M, Piemonti L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients. 2019 Apr 26;11(5):962.
Dowis K, Banga S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients 2021;13:1654.
Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr. 2021 Nov 23;8:782657.
Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, Pluta R. Ketogenic Diet and Epilepsy. Nutrients. 2019;11(10):2510.
Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes & Essential Fatty Acids. 2004;70:309–319.
Pluta, R. The ketogenic diet for epilepsy therapy in children: Quo vadis? Nutrition 2011; 27:615–616.
Vining EP, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, Shinnar S, Shuman R, Trevathan E, Wheless JW. A multicenter study of the efficacy of the ketogenic diet. Arch. Neurol. 1998;55:1433–1437.
Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM. The efficacy of the ketogenic diet 1998: A prospective evaluation of intervention in 150 children. Pediatrics 1998;102:1358–1363.
Sampaio LP. Ketogenic diet for epilepsy treatment. Arq. Neuropsiquiatr. 2016;74:842–848.
Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH. The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurol. 2008;7:500–506.
Kossoff EH, Pyzik PL, McGrogan JR, Vining EPG, Freeman JM. (2002). Efficacy of the Ketogenic Diet for Infantile Spasms. Pediatrics. 109;5:780–783.
Pires ME, Ilea A, Bourel E, Bellavoine V, Merdariu D, Berquin P, Auvin S. Ketogenic diet for infantile spasms refractory to first line treatments: An open prospective study. Epilepsy Res. 2013;105:189–194.
Martin-McGill KJ, Jackson CF, Bresnahan R, Levy RG, Cooper PN. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev. 2018;11:CD001903.
Liu H, Yang Y, Wang Y, Tang H, Zhang F, Zhang Y, Zhao Y. Ketogenic diet for treatment of intractable epilepsy in adults: A meta-analysis of observational studies. Epilepsia Open 2018;3:9–17.
Rezaei S, Abdurahman AA, Saghazadeh A, Badv SRS, Mahmoudi M. Short-term and long-term efficacy of classical ketogenic diet and modified Atkins diet in children and adolescents with epilepsy: A systematic review and meta-analysis. Nutr. Neurosci. 2019;22:317–334.
Ye F, Li XJ, Jiang WL, Sun HB, Liu J. Efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy: A meta-analysis. J. Clin. Neurol. 2015;11:26–31.
Kelley SA, Kossoff EH, Doose syndrome (myoclonic-astatic epilepsy): 40 years of progress. Dev. Med. Child. Neurol. 2010;52:988–993.
Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR, Bergqvist CAG, Blackford R, Buchhalter JR, Caraballo RH, Cross HJ, Dahlin MG, et al. Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia 2009;50:304–317.
Laux L, Blackford R. The ketogenic diet in Dravet syndrome. J. Child. Neurol. 2013;28:1041–1044.
Barzegar M, Afghan M, Tarmahi V, Behtari M, Khamaneh SR, Raeisi S. Ketogenic diet: Overview, types, and possible anti-seizure mechanisms. Nutr. Neurosci. 2019 Apr;24(4):307-316.
Yellen G. Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia. 2008;49(s8):80–2.
Franks NP, Honoré E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci. 2004;25(11):601–8.
Cheng CM, Hicks K, Wang J, Eagles DA, Bondy CA. Caloric restriction augments brain glutamic acid decarboxylase-65 and-67 expression. J Neurosci Res. 2004;77(2):270–6.
Barragan A, Weidner JM, Jin Z, Korpi E, Birnir B. GABAergic signalling in the immune system. Acta Physiol. 2015;213(4):819–27.
Suzuki Y, Takahashi H, Fukuda M, Hino H, Kobayashi K, Tanaka J, et al. β-hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Res. 2009;1268:17–23.
Dashti HM, Mathew TC, Al-Zaid NS. Efficacy of Low-Carbohydrate Ketogenic Diet in the Treatment of Type 2 Diabetes. Med Princ Pract 2021;30:223-235.
Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012 Oct;28(10):1016-21.
Westman EC, Yancy WS, Mavropoulos JC. et al. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond) 5, 36 (2008).
Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013 Oct;110(7):1178-87.
Saslow LR, Daubenmier JJ, Moskowitz JT, Kim S, Murphy EJ, Phinney SD, Ploutz-Snyder R, Goldman V, Cox RM, Mason AE, Moran P, Hecht FM. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes. 2017 Dec 21;7(12):304.
Yancy WS Jr, Foy M, Chalecki AM, Vernon MC, Westman EC. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond). 2005 Dec 1;2:34.
Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016 Dec;48:34-47.
Norwitz NG, Hu MT, Clarke K. The Mechanisms by Which the Ketone Body D-β-Hydroxybutyrate May Improve the Multiple Cellular Pathologies of Parkinson's Disease. Front Nutr. 2019 May 14;6:63.
Cahill GFJ. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006;26:1–22.
Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM, Mangerich A, Wilson MA, Mattson MP, Bergersen LH, Cogger VC, Warren A, Le Couteur DG, Moaddel R, Wilson DM 3rd, Croteau DL, de Cabo R, Bohr VA. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 2014 Nov 4;20(5):840-855.
Fontana L, Ghezzi L, Cross AH, Piccio L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J Exp Med. 2021 Feb 1;218(2):e20190086.
Koh S, Dupuis N, Auvin S. Ketogenic diet and Neuroinflammation. Epilepsy Res. 2020 Nov;167:106454.
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis. 2022 Jul 11;13(4):1146-1165.
Brenton JN, Banwell B, Bergqvist AGC, Lehner-Gulotta D, Gampper L, Leytham E, Coleman R, Goldman MD. Pilot study of a ketogenic diet in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflamm. 2019 Apr 12;6(4):e565.
Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, Suarez J, Michalsen A, Cross AH, Morgan TE, Wei M, Paul F, Bock M, Longo VD. A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016 Jun 7;15(10):2136-2146.
Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease. Antioxidants (Basel). 2018 Apr 28;7(5):63.
Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging. 2012 Feb;33(2):425.e19-27.
Krikorian R, Shidler MD, Summer SS, Sullivan PG, Duker AP, Isaacson RS, Espay AJ. Nutritional ketosis for mild cognitive impairment in Parkinson's disease: A controlled pilot trial. Clin Park Relat Disord. 2019 Aug 6;1:41-47.
Norwitz NG, Dalai SS, Palmer CM. Ketogenic diet as a metabolic treatment for mental illness. Curr Opin Endocrinol Diabetes Obes. 2020 Oct;27(5):269-274.
Morris G, Puri BK, Carvalho A, et al. Induced ketosis as a treatment for neuroprogressive disorders: food for thought? Int J Neuropsychopharmacol 2020; 23:366–384.
Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and postmortem brain tissue. Brain Behav Immun 2019;81:24–40.
Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, Sommer IEC, Howes OD. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med. 2019 Oct;49(13):2186-2196.
Morris G, Puri BK, Maes M, et al. The role of microglia in neuroprogressive disorders: mechanisms and possible neurotherapeutic effects of induced ketosis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109858.
Murphy P, Burnham WM. The ketogenic diet causes a reversible decrease in activity level in Long-Evans rats. Exp Neurol 2006; 201:84–89.
Herbert MR, Buckley JA. Autism and dietary therapy: case report and review of the literature. J Child Neurol 2013; 28:975–982.
Zarnowska I, Chrapko B, Gwizda G, et al. Therapeutic use of carbohydraterestricted diets in an autistic child; a case report of clinical and 18FDG PET findings. Metab Brain Dis 2018;33:1187–1192.
Evangeliou A, Vlachonikolis I, Mihailidou H, et al. Application of a ketogenic diet in children with autistic behavior: pilot study. J Child Neurol 2003;18:113–118.
Lee RWY, Corley MJ, Pang A, et al. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav 2018;188:205–211.
Ari C, Kovacs Z, Juhasz G, et al. Exogenous ketone supplements reduce anxiety-related behavior in Sprague-Dawley and wistar albino glaxo/rijswijk rats. Front Mol Neurosci 2016;9:137.
Kovacs Z, D’Agostino DP, Ari C. Anxiolytic effect of exogenous ketone supplementation is abolished by adenosine A1 receptor inhibition in wistar albino glaxo/rijswijk rats. Front Behav Neurosci 2018;12:29.
Phelps JR, Siemers SV, El-Mallakh RS. The ketogenic diet for type II bipolar disorder. Neurocase 2013;19:423–426.
Palmer CM, Gilbert-Jaramillo J, Westman EC. The ketogenic diet and remission of psychotic symptoms in schizophrenia: Two case studies. Schizophr Res. 2019 Jun;208:439-440.
Sarnyai Z, Kraeuter AK, Palmer CM. Ketogenic diet for schizophrenia: clinical implication. Curr Opin Psychiatry 2019;32:394–401.
Palmer CM. Ketogenic diet in the treatment of schizoaffective disorder: two case studies. Schizophr Res 2017;189:208–209.
Carmen M, Safer DL, Saslow LR, et al. Treating binge eating and food addiction symptoms with low-carbohydrate ketogenic diets: a case series. J Eat Disord 2020;8:2.
Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, Spera G, Lubrano C, Gnessi L. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev. 2020 Aug;21(8):e13024.
Gibson AA, Seimon RV, Lee CM, et al. Do ketogenic diets really suppress appetite? A systematic review and meta‐analysis. Obes Rev. 2015;16(1):64‐76.
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta‐hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211‐214.
Graff EC, Fang H, Wanders D, Judd RL. Anti‐inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. 2016;65(2):102‐113.
Taggart AK, Kero J, Gan X, et al. (D)‐β‐hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA‐G. J Biol Chem. 2005;280(29):26649‐26652
Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite beta‐hydroxybutyrate blocks NLRP3 inflammasome‐mediated inflammatory disease. Nat Med. 2015;21(3):263‐269.
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance. Nat Med. 2011;17(2):179‐188.
Gupta L, Khandelwal D, Kalra S, Gupta P, Dutta D, Aggarwal S. Ketogenic diet in endocrine disorders: Current perspectives. J Postgrad Med. 2017 Oct-Dec;63(4):242-251.
Batch JT, Lamsal SP, Adkins M, Sultan S, Ramirez MN. Advantages and Disadvantages of the Ketogenic Diet: A Review Article. Cureus. 2020 Aug 10;12(8):e9639.
Agrawal, Avishkar & Aggarwal, Sunita & Rv, Raghu & Garg, Sandeep & Bharti, Praveen. (2021). Ketogenic Diet -Where are we so far?. Journal, Indian Academy of Clinical Medicine;22:51-56.
Burén J, Ericsson M, Damasceno NRT, Sjödin A. A Ketogenic Low-Carbohydrate High-Fat Diet Increases LDL Cholesterol in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients. 2021 Mar 2;13(3):814.
Chowdhury R., Warnakula S., Kunutsor S., Crowe F., Ward H.A., Johnson L., Franco O.H., Butterworth A.S., Forouhi N.G., Thompson S.G., et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Int. Med. 2014;160:398–406.
Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015;5:Cd011737.
Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010 Mar 23;7(3):e1000252.
Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010 Mar;91(3):535-46.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Natalia Ilnicka, Leila Abod, Daria Matyja, Maria Sadlik, Patrycja Zuziak
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 550
Number of citations: 0