Diet and physical activity in the treatment of obesity - current knowledge
DOI:
https://doi.org/10.12775/JEHS.2022.12.12.028Keywords
obesity, exercise, diet, adipose tissueAbstract
Introduction: Obesity is now becoming a growing problem and challenge for medicine. The number of people with excessive body weight has now reached more than 2 billion, or about 30% of the world's population. The purpose of this article is to identify and describe some of the already known treatments for obesity, along with the latest research on the subject, in order to show the importance of developing and introducing new methods of weight loss.
Aim of the study: The purpose of this article is to review the impact of obesity on health and the diets offered to people struggling with the disease.
Materials and methods: We reviewed the literature available in the PubMed database up to November 2022, using the keywords.
Results: Consistently limiting caloric intake is a must when losing weight. There are also diets such as low-carbohydrate, low-fat and high-protein diets, but following them can also have some side effects. For example, a high-protein diet can lead to kidney stones. The Mediterranean diet is also a good option for people with obesity. It lowers the risk of cardiovascular disease and cancer. All obesity treatment suggestions consistently recommend a balanced and low-calorie diet with reduced fat (along with saturated fatty acids) and optimal amounts of fiber. In addition to diet, physical activity is an important topic. The primary recommendation for people with obesity is at least moderate to vigorous physical activity of at least 150 minutes per week.
Summary: In conclusion, the overarching goal of obesity treatment is to improve quality of life. Calorie restriction, regular exercise or a combination of both is accepted as an effective strategy for preventing or treating obesity.
References
Caballero B. Humans against Obesity: Who Will Win?. Adv Nutr. 2019;10(suppl_1):S4-S9. doi:10.1093/advances/nmy055
Chooi Y.C., Ding C., Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. doi: 10.1016/j.metabol.2018.09.005.
World Health Organization Obesity and Overweight. Fact Sheet. [(accessed on 25 February 2021)];
Stamatakis E., Chau J.Y., Pedisic Z., Bauman A., Macniven R., Coombs N., Hamer M. Are Sitting Occupations Associated with Increased All-Cause, Cancer, and Cardiovascular Disease Mortality Risk? A Pooled Analysis of Seven British Population Cohorts. PLoS ONE. 2013;8:e73753. doi: 10.1371/journal.pone.0073753
UNICEF, WHO, et al. Joint child malnutrition estimates: levels and trends. New York, NY: UNICEF, 2017.
Bray G.A., Kim K.K., Wilding J.P.H. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017;18:715–723. doi: 10.1111/obr.12551.
Sarma S., Sockalingam S., Dash S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes. Metab. 2021;23(Suppl. 1):3–16. doi: 10.1111/dom.14290
Bhaskaran K., Dos-Santos-Silva I., Leon D.A., Douglas I.J., Smeeth L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018;6:944–953. doi: 10.1016/S2213-8587(18)30288-2.
Piché M.E., Tchernof A., Després J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020;126:1477–1500. doi: 10.1161/CIRCRESAHA.120.316101.
Gerges S.H., Wahdan S.A., Elsherbiny D.A., El-Demerdash E. Non-alcoholic fatty liver disease: An overview of risk factors, pathophysiological mechanisms, diagnostic procedures, and therapeutic interventions. Life Sci. 2021;271:119220. doi: 10.1016/j.lfs.2021.119220.
Avgerinos K.I., Spyrou N., Mantzoros C.S., Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metab. Clin. Exp. 2019;92:121–135. doi: 10.1016/j.metabol.2018.11.001
Di Angelantonio E., Bhupathiraju Sh N., Wormser D., Gao P., Kaptoge S., Berrington de Gonzalez A., Cairns B.J., Huxley R., Jackson Ch L., Joshy G., et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–786. doi: 10.1016/S0140-6736(16)30175-1.
Bhaskaran K., Dos-Santos-Silva I., Leon D.A., Douglas I.J., Smeeth L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018;6:944–953. doi: 10.1016/S2213-8587(18)30288-2.
Dai H., Alsalhe T.A., Chalghaf N., Riccò M., Bragazzi N.L., Wu J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: An analysis of the Global Burden of Disease Study. PLoS Med. 2020;17:e1003198. doi: 10.1371/journal.pmed.1003198.
Kheniser K., Saxon D.R., Kashyap S.R. Long-term weight loss strategies for obesity. J. Clin. Endocrinol. Metab. 2021 doi: 10.1210/clinem/dgab091.
Kolahdouzi S., Talebi-Garakani E., Hamidian G., Safarzade A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life Sci. 2019;220:32–43. doi: 10.1016/j.lfs.2019.01.037.
Ross R., Soni S., Houle S.A. Negative Energy Balance Induced by Exercise or Diet: Effects on Visceral Adipose Tissue and Liver Fat. Nutrients. 2020;12:891. doi: 10.3390/nu12040891.
Verheggen R.J., Maessen M.F., Green D.J., Hermus A.R., Hopman M.T., Thijssen D.H. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: Distinct effects on body weight and visceral adipose tissue. Obes. Rev. 2016;17:664–690. doi: 10.1111/obr.12406.
Aragon AA, Schoenfeld BJ, Wildman R, Kleiner S, VanDusseldorp T, Taylor L, Earnest CP, Arciero PJ, Wilborn C, Kalman DS, Stout JR, Willoughby DS, Campbell B, Arent SM, Bannock L, Smith-Ryan AE, Antonio J. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 2017 Jun 14;14:16. doi: 10.1186/s12970-017-0174-y. PMID: 28630601; PMCID: PMC5470183.
Brouns F. Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? Eur J Nutr. 2018 Jun;57(4):1301-1312. doi: 10.1007/s00394-018-1636-y. Epub 2018 Mar 14. Erratum in: Eur J Nutr. 2019 Apr 16;: PMID: 29541907; PMCID: PMC5959976.
Sackner-Bernstein J, Kanter D, Kaul S. Dietary Intervention for Overweight and Obese Adults: Comparison of Low-Carbohydrate and Low-Fat Diets. A Meta-Analysis. PLoS One. 2015 Oct 20;10(10):e0139817. doi: 10.1371/journal.pone.0139817. PMID: 26485706; PMCID: PMC4618935.
Mansoor N., Vinknes K.J., Veierød M.B., Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2016;115:466–479. doi: 10.1017/S0007114515004699.
Joshi S, Mohan V. Pros & cons of some popular extreme weight-loss diets. Indian J Med Res. 2018 Nov;148(5):642-647. doi: 10.4103/ijmr.IJMR_1793_18. PMID: 30666989; PMCID: PMC6366252.
Oh R, Gilani B, Uppaluri KR. Low Carbohydrate Diet. 2020 Jul 9. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 30725769.
Sabry M, Mostafa S, Rashed L, Abdelgwad M, Kamar S, Estaphan S. Matrix metalloproteinase 9 a potential major player connecting atherosclerosis and osteoporosis in high fat diet fed rats. PLoS One. 2021 Feb 11;16(2):e0244650. doi: 10.1371/journal.pone.0244650. PMID: 33571214; PMCID: PMC7877768.
Cuenca-Sánchez M, Navas-Carrillo D, Orenes-Piñero E. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health. Adv Nutr. 2015 May 15;6(3):260-6. doi: 10.3945/an.114.007716. PMID: 25979491; PMCID: PMC4424780.
Dernini S, Berry EM, Serra-Majem L, La Vecchia C, Capone R, Medina FX, Aranceta-Bartrina J, Belahsen R, Burlingame B, Calabrese G, Corella D, Donini LM, Lairon D, Meybeck A, Pekcan AG, Piscopo S, Yngve A, Trichopoulou A. Med Diet 4.0: the Mediterranean diet with four sustainable benefits. Public Health Nutr. 2017 May;20(7):1322-1330. doi: 10.1017/S1368980016003177. Epub 2016 Dec 22. PMID: 28003037.
Zubrzycki A, Cierpka-Kmiec K, Kmiec Z, Wronska A. The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J Physiol Pharmacol. 2018 Oct;69(5). doi: 10.26402/jpp.2018.5.02. Epub 2019 Jan 21. PMID: 30683819.
Fischer K., Pick J.A., Moewes D., Noethlings U. Qualitative aspects of diet affecting visceral and subcutaneous abdominal adipose tissue: A systematic review of observational and controlled intervention studies. Nutr. Rev. 2015;73:191–215. doi: 10.1093/nutrit/nuu006.
Barnard N.D., Levin S.M., Yokoyama Y. A systematic review and meta-analysis of changes in body weight in clinical trials of vegetarian diets. J. Acad. Nutr. Diet. 2015;115:954–969. doi: 10.1016/j.jand.2014.11.016.
Freire R. Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition. 2020;69:110549. doi: 10.1016/j.nut.2019.07.001.
Kanerva N., Rissanen H., Knekt P., Havulinna A.S., Eriksson J.G., Männistö S. The healthy Nordic diet and incidence of Type 2 Diabetes--10-year follow-up. Diabetes Res. Clin. Pract. 2014;106:e34–e37. doi: 10.1016/j.diabres.2014.08.016.
Huang R.Y., Huang C.C., Hu F.B., Chavarro J.E. Vegetarian Diets and Weight Reduction: A Meta-Analysis of Randomized Controlled Trials. J. Gen. Intern. Med. 2016;31:109–116. doi: 10.1007/s11606-015-3390-7.
Shahavandi M., Djafari F., Shahinfar H., Davarzani S., Babaei N., Ebaditabar M., Djafarian K., Clark C.C.T., Shab-Bidar S. The association of plant-based dietary patterns with visceral adiposity, lipid accumulation product, and triglyceride-glucose index in Iranian adults. Complement. Ther. Med. 2020;53:102531. doi: 10.1016/j.ctim.2020.102531.
Tonstad S., Butler T., Yan R., Fraser G.E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32:791–796. doi: 10.2337/dc08-1886.
Wright N., Wilson L., Smith M., Duncan B., McHugh P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr. Diabetes. 2017;7:e256. doi: 10.1038/nutd.2017.3.
Eichelmann F., Schwingshackl L., Fedirko V., Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: A systematic review and meta-analysis of intervention trials. Obes. Rev. 2016;17:1067–1079. doi: 10.1111/obr.12439.
Jayarathne S., Koboziev I., Park O.H., Oldewage-Theron W., Shen C.L., Moustaid-Moussa N. Anti-Inflammatory and Anti-Obesity Properties of Food Bioactive Components: Effects on Adipose Tissue. Prev. Nutr. Food Sci. 2017;22:251–262. doi: 10.3746/pnf.2017.22.4.251.
Torres-Fuentes C., Schellekens H., Dinan T.G., Cryan J.F. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr. Neurosci. 2015;18:49–65. doi: 10.1179/1476830513Y.0000000099.
Siriwardhana N., Kalupahana N.S., Cekanova M., LeMieux M., Greer B., Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 2013;24:613–623. doi: 10.1016/j.jnutbio.2012.12.013.
Melina V., Craig W., Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016;116:1970–1980. doi: 10.1016/j.jand.2016.09.025.
Baden M.Y., Satija A., Hu F.B., Huang T. Change in plant-based diet quality is associated with changes in plasma adiposity-associated biomarker concentrations in women. J. Nutr. 2019;149:676–686. doi: 10.1093/jn/nxy301.
Turner-McGrievy G.M., Davidson C.R., Wingard E.E., Wilcox S., Frongillo E.A. Comparative effectiveness of plant-based diets for weight loss: A randomized controlled trial of five different diets. Nutrition. 2015;31:350–358. doi: 10.1016/j.nut.2014.09.002.
McEvoy C.T., Temple N., Woodside J.V. Vegetarian diets, low-meat diets and health: A review. Public Health Nutr. 2012;15:2287–2294. doi: 10.1017/S1368980012000936.
Paoli A., Tinsley G., Blanco A., Moro T., “The influence of meal frequency and timing on health in Humans: The role of fasting.” Nutrients, 2019 April; 11(4), 719.
Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I. Health Benefits of Fasting and Caloric Restriction. Curr Diab Rep. 2017 Oct 23;17(12):123. doi: 10.1007/s11892-017-0951-7. PMID: 29063418.
Holmback I., Ericson U., Gullberg B., Wirfalt E. “A high eating frequency is associated with an overall healthy lifestyle in middle-aged men and women and reduced likelihood of general and central obesity in men.” Br. J. Nutr. 2010;104:1065–1073. doi: 10.1017/S0007114510001753.
Longo V.D., Mattson M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–192. doi: 10.1016/j.cmet.2013.12.008.
Mager D.E., Wan R., Brown M., Cheng A., Wareski P., Abernethy D.R., Mattson M.P. Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J. 2006;20:631–637. doi: 10.1096/fj.05-5263com.
Phillips M.L. Circadian rhythms: Of owls, larks and alarm clocks. Nature. 2009;458:142–144. doi: 10.1038/458142a.
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017 Oct;39:46-58. doi: 10.1016/j.arr.2016.10.005. Epub 2016 Oct 31. PMID: 27810402; PMCID: PMC5411330.
Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG, Son TG, Maudsley S, Carlson OD, Egan JM, Flyvbjerg A, Howell A. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond) 2011;35:714–727.
Teng NI, Shahar S, Manaf ZA, Das SK, Taha CS, Ngah WZ. Efficacy of fasting calorie restriction on quality of life among aging men. Physiology & behavior. 2011;104:1059–1064.
Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, Ill., U.S.A: C.C. Thomas; 1988.
Patterson R.E., Laughlin G.A., LaCroix A.Z., Hartman S.J., Natarajan L., Senger C.M., Martínez M.E., Villaseñor A., Sears D.D., Marinac C.R., et al. Intermittent Fasting and Human Metabolic Health. J. Acad. Nutr. Diet. 2015;115:1203–1212. doi: 10.1016/j.jand.2015.02.018.
Barnosky A.R., Hoddy K.K., Unterman T.G., Varady K.A. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: A review of human findings. Transl. Res. 2014;164:302–311. doi: 10.1016/j.trsl.2014.05.013.
Trepanowski J.F., Kroeger C.M., Barnosky A., Klempel M.C., Bhutani S., Hoddy K.K., Gabel K., Freels S., Rigdon J., Rood J., et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017;177:930–938. doi: 10.1001/jamainternmed.2017.0936.
Harvie M., Howell A. Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects-A Narrative Review of Human and Animal Evidence. Behav. Sci. 2017;7:4. doi: 10.3390/bs7010004.
Harvie M.N., Pegington M., Mattson M.P., Frystyk J., Dillon B., Evans G., Cuzick J., Jebb S.A., Martin B., Cutler R.G., et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2011;35:714–727. doi: 10.1038/ijo.2010.171.
Longo VD, Panda S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016 Jun 14;23(6):1048-1059. doi: 10.1016/j.cmet.2016.06.001. PMID: 27304506; PMCID: PMC5388543.
Smyers ME, Koch LG, Britton SL, Wagner JG, Novak CM. Enhanced weight and fat loss from long-term intermittent fasting in obesity-prone, low-fitness rats. Physiol Behav. 2021 Mar 1;230:113280. doi: 10.1016/j.physbeh.2020.113280. Epub 2020 Dec 5. PMID: 33285179; PMCID: PMC7856160.
Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019 May 30;11(6):1234. doi: 10.3390/nu11061234. PMID: 31151228; PMCID: PMC6627766.
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27(6):1212-1221.e3. doi:10.1016/j.cmet.2018.04.010
Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147-e167. doi:10.2337/dc10-9990
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002 Feb 7;346(6):393-403. doi: 10.1056/NEJMoa012512. PMID: 11832527; PMCID: PMC1370926.
Rabiee A. Beige Fat Maintenance; Toward a Sustained Metabolic Health. Front. Endocrinol. 2020;11:634. doi: 10.3389/fendo.2020.00634.
Kucuk Baloglu F., Garip S., Heise S., Brockmann G., Severcan F. FTIR imaging of structural changes in visceral and subcutaneous adiposity and brown to white adipocyte transdifferentiation. Analyst. 2015;140:2205–2214. doi: 10.1039/C4AN02008A.
Korta P., Pochec E., Mazur-Bialy A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina. 2019;55:485. doi: 10.3390/medicina55080485.
Stanford K.I., Goodyear L.J. Exercise regulation of adipose tissue. Adipocyte. 2016;5:153–162. doi: 10.1080/21623945.2016.1191307.
Tanaka R., Fuse S., Kuroiwa M., Amagasa S., Endo T., Ando A., Kime R., Kurosawa Y., Hamaoka T. Vigorous-Intensity Physical Activities Are Associated with High Brown Adipose Tissue Density in Humans. Int. J. Environ. Res. Public Health. 2020;17:2796. doi: 10.3390/ijerph17082796.
Islam H., Townsend L.K., Hazell T.J. Excess Postexercise Oxygen Consumption and Fat Utilization Following Submaximal Continuous and Supramaximal Interval Running. Res. Q. Exerc. Sport. 2018;89:450–456. doi: 10.1080/02701367.2018.1513633.
Zhang H., Tong T.K., Qiu W., Zhang X., Zhou S., Liu Y., He Y. Comparable Effects of High-Intensity Interval Training and Prolonged Continuous Exercise Training on Abdominal Visceral Fat Reduction in Obese Young Women. J. Diabetes Res. 2017;2017:5071740. doi: 10.1155/2017/5071740.
Riis S., Christensen B., Nellemann B., Moller A.B., Husted A.S., Pedersen S.B., Schwartz T.W., Jorgensen J.O.L., Jessen N. Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. J. Appl. Physiol. 2019;126:569–577. doi: 10.1152/japplphysiol.00989.2018.
Taylor J.L., Holland D.J., Mielke G.I., Bailey T.G., Johnson N.A., Leveritt M.D., Gomersall S.R., Rowlands A.V., Coombes J.S., Keating S.E. Effect of High-Intensity Interval Training on Visceral and Liver Fat in Cardiac Rehabilitation: A Randomized Controlled Trial. Obesity. 2020;28:1245–1253. doi: 10.1002/oby.22833.
Stinkens R., Brouwers B., Jocken J.W., Blaak E.E., Teunissen-Beekman K.F., Hesselink M.K., van Baak M.A., Schrauwen P., Goossens G.H. Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J. Appl. Physiol. 2018;125:1585–1593. doi: 10.1152/japplphysiol.00496.2018
Allman B.R., Morrissey M.C., Kim J.S., Panton L.B., Contreras R.J., Hickner R.C., Ormsbee M.J. Fat metabolism and acute resistance exercise in trained women. J. Appl. Physiol. 2019;126:739–745. doi: 10.1152/japplphysiol.00752.2018.
Miyatake N., Nishikawa H., Morishita A., Kunitomi M., Wada J., Suzuki H., Takahashi K., Makino H., Kira S., Fujii M. Daily walking reduces visceral adipose tissue areas and improves insulin resistance in Japanese obese subjects. Diabetes Res. Clin. Pract. 2002;58:101–107. doi: 10.1016/S0168-8227(02)00129
Durheim M.T., Slentz C.A., Bateman L.A., Mabe S.K., Kraus W.E. Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity. Am. J. Physiol. Endocrinol. Metab. 2008;295:E407–E412. doi: 10.1152/ajpendo.90397.200
Wilmore J.H., Despres J.P., Stanforth P.R., Mandel S., Rice T., Gagnon J., Leon A.S., Rao D., Skinner J.S., Bouchard C. Alterations in body weight and composition consequent to 20 wk of endurance training: The HERITAGE Family Study. Am. J. Clin. Nutr. 1999;70:346–352. doi: 10.1093/ajcn/70.3.346.
Lee S., Kuk J.L., Davidson L.E., Hudson R., Kilpatrick K., Graham T.E., Ross R. Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without Type 2 diabetes. J. Appl. Physiol. 2005;99:1220–1225.
Beavers KM, Ambrosius WT, Rejeski WJ, Burdette JH, Walkup MP, Sheedy JL, et al. Effect of Exercise Type During Intentional Weight Loss on Body Composition in Older Adults with Obesity. Obesity (Silver Spring). 2017 Nov;25(11):1823-1829. doi: 10.1002/oby.21977. PMID: 29086504; PMCID: PMC5678994.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kinga Brzuszkiewicz, Gracjan Rudziński, Kinga Pożarowska, Arkadiusz Grunwald

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 606
Number of citations: 0