The impact of Bacillus Calmette-Guérin (BCG) vaccination on the course of COVID-19
effectiveness and possible mechanism
DOI:
https://doi.org/10.12775/JEHS.2022.12.10.016Keywords
BCG, Bacillus Calmette-Guérin, vaccine, COVID-19Abstract
Nowadays, Bacillus Calmette-Guérin (BCG) is the most commonly used vaccine worldwide, used typically for tuberculosis but also in non-muscle invasive bladder cancer management. Basing on previously confirmed antiviral features of BCG and first statistic data reports, BCG usage in COVID-19 prevention was claimed and its potential molecular mechanism was searched. In scientific literature there was 10 publications proving several possible mechanism of BCG interaction with SARS-CoV-2 infection immune response. The most often was cross-reactivity between various BCG and SARS-CoV-2 antigens, including those crucial for their clinical effects. In most cases, those antigens linking was shown according to bioinformatical research. According to this research, the potential role of BCG in COVID-19 management should be considered as significant, at least until the clinical trials conducted nowadays will be over.
References
Lobo N, Brooks NA, Zlotta AR, Cirillo JD, Boorjian S, Black PC, et al. 100 years of Bacillus Calmette-Guérin immunotherapy: from cattle to COVID-19. Nat Rev Urol. 2021;18(10):611–622.
Laukhtina E, Abufaraj M, Al-Ani A, Ali MR, Mori K, Moschini M, et al. Intravesical Therapy in Patients with Intermediate-risk Non-muscle-invasive Bladder Cancer: A Systematic Review and Network Meta-analysis of Disease Recurrence. Eur Urol Focus. 2021. doi:10.1016/J.EUF.2021.03.016.
WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 25 November 2021.
Redelman-Sidi G. Could BCG be used to protect against COVID-19? Nature Reviews Urology. 2020;17(6):316–317.
Stensballe LG, Nante E, Jensen IP, Kofoed PE, Poulsen A, Jensen H, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine. 2005;23(10):1251–1257.
Leentjens J, Kox M, Stokman R, Gerretsen J, Diavatopoulos DA, Van Crevel R, et al. BCG Vaccination Enhances the Immunogenicity of Subsequent Influenza Vaccination in Healthy Volunteers: A Randomized, Placebo-Controlled Pilot Study. J Infect Dis. 2015;212(12):1930–1938.
Rifai W, Datau EA, Sultana A, Mandang AAA. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med Indones. 2011;43(3):185–190.
Malik YS, Ansari MI, Ganesh B, Sircar S, Bhat S, Pande T, et al. BCG vaccine: a hope to control COVID-19 pandemic amid crisis. Hum Vaccin Immunother. 2020;1–9.
Fritschi N, Curtis N, Ritz N. Bacille Calmette Guérin (BCG) and new TB vaccines: Specific, cross-mycobacterial and off-target effects. Paediatric Respiratory Reviews. 2020. doi:10.1016/j.prrv.2020.08.004.
Malik YS, Obli Rajendran V, MA I, Pande T, Ravichandran K, Jaganathasamy N, et al. Responses to COVID-19 in South Asian Association for Regional Cooperation (SAARC) countries in 2020, a data analysis during a world of crises. Chaos Solitons Fractals. 2021;152. doi:10.1016/J.CHAOS.2021.111311.
Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe. 2018;23(1):89-100.e5.
Sala G, Chakraborti R, Ota A, Miyakawa T. Association of BCG vaccination policy and tuberculosis burden with incidence and mortality of COVID-19. medRxiv Prepr. 2020;2020.03.30.20048165.
Riccò M, Gualerzi G, Ranzieri S, Luigi Bragazzi N. Stop playing with data: There is no sound evidence that bacille calmette-guérin may avoid SARS-CoV-2 infection for now. Acta Biomed. 2020;91(2):207–213.
de Chaisemartin C, de Chaisemartin L. Bacille Calmette-Guérin Vaccination in Infancy Does Not Protect Against Coronavirus Disease 2019 (COVID-19): Evidence From a Natural Experiment in Sweden. Clin Infect Dis. 2021;72(10):e501–e505.
Arlehamn CSL, Sette A, Peters B. Lack of evidence for BCG vaccine protection from severe COVID-19. Proc Natl Acad Sci. 2020;117(41):25203–25204.
Kuroda N. Demand for BCG Vaccine Due to Unproven Claims of its Role in Preventing COVID-19 Is Causing Shortages of Vaccines for Infants in Japan. Pediatr Infect Dis J. 2020;39(7):E159–E160.
Kumar J, Meena J. Demystifying BCG Vaccine and COVID-19 Relationship. Indian Pediatr. 2020;57(6):588–589.
Jirjees FJ, Dallal Bashi YH, Al-Obaidi HJ. COVID-19 Death and BCG Vaccination Programs Worldwide. Tuberc Respir Dis (Seoul). 2021;84(1):13–21.
Islam MZ, Zahan MKE, Al-Bari MAA. Convergence between global BCG vaccination and COVID-19 pandemic. J Med Virol. 2021;93(3):1496–1505.
Ventura L, Vitali M, Romano Spica V. Bacillus Calmette-Guérin vaccination and socioeconomic variables vs COVID-19 global features: Clearing up a controversial issue. Allergy. 2021;76(3):884–887.
Brooks NA, Puri A, Garg S, Nag S, Corbo J, Turabi A El, et al. The association of Coronavirus Disease-19 mortality and prior bacille Calmette-Guerin vaccination: a robust ecological analysis using unsupervised machine learning. Sci Rep. 2021;11(1). doi:10.1038/S41598-020-80787-Z.
Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. medRxiv. 2020;2020.03.24.20042937.
Sparrow A. This Vaccine Could Save Health Care Workers From the Coronavirus. 2020. https://foreignpolicy.com/2020/03/24/coronavirus-vaccine-health-care-workers-bcg/. Accessed 28 November 2021.
Miyasaka M. Is BCG vaccination causally related to reduced COVID-19 mortality? EMBO Mol Med. 2020;12(6):e12661.
Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the spread and severity of COVID-19? Allergy. 2020;75(7):1824–1827.
Ręka G, Korzeniowska A, Piecewicz-Szczęsna H. The influence of vaccination against tuberculosis with the Bacillus-Calmette-Guérin(BCG) vaccine on COVID-19 incidence and mortality - review of the literature. Przegl Epidemiol. 2020;74(2):290–302.
Weng CH, Saal A, Butt WWW, Bica N, Fisher JQ, Tao J, et al. Bacillus Calmette–Guérin vaccination and clinical characteristics and outcomes of COVID-19 in Rhode Island, United States: a cohort study. Epidemiol Infect. 2020;148. doi:10.1017/S0950268820001569.
Fu W, Ho PC, Liu CL, Tzeng KT, Nayeem N, Moore JS, et al. Reconcile the debate over protective effects of BCG vaccine against COVID-19. Sci Rep. 2021;11(1). doi:10.1038/S41598-021-87731-9.
Kulus J, Kulus M, Stefańska K, Sobolewski J, Piotrowska-Kempisty H, Mozdziak P, et al. SARS-CoV-2 Genetic Variability and Non-Specific Immunity Associated with the Use of Different BCG Strains-A Molecular and Clinical Approach. Vaccines. 2021;9(6). doi:10.3390/VACCINES9060639.
Moorlag SJCFM, van Deuren RC, van Werkhoven CH, Jaeger M, Debisarun P, Taks E, et al. Safety and COVID-19 Symptoms in Individuals Recently Vaccinated with BCG: a Retrospective Cohort Study. Cell Reports Med. 2020;1(5):100073.
Pépin J, Labbé AC, Carignan A, Parent ME, Yu J, Grenier C, et al. Does BCG provide long-term protection against SARS-CoV-2 infection? A case-control study in Quebec, Canada. Vaccine. 2021. doi:10.1016/J.VACCINE.2021.08.019.
de Chaisemartin C, de Chaisemartin L. BCG vaccination in infancy does not protect against COVID-19. Evidence from a natural experiment in Sweden. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1223.
de la Fuente J, Armas O, Sánchez-Rodríguez L, Gortázar C, Lukashev AN, Almazán C, et al. Citizen science initiative points at childhood BCG vaccination as a risk factor for COVID-19. Transbound Emerg Dis. 2021;68(6). doi:10.1111/TBED.14097.
Torun S, Ozkaya S, Şen N, Kanat F, Karaman I, Yosunkaya S, et al. The Relationship between COVID-19 Severity and Bacillus Calmette-Guérin (BCG)/ Mycobacterium tuberculosis exposure history in healthcare workers: a multi-center study. Pathog Glob Health. 2021;115(6). doi:10.1080/20477724.2021.1927605.
Patella V, Sanduzzi A, Bruzzese D, Florio G, Brancaccio R, Fabbrocini G, et al. A Survey Among Italian Physicians During COVID-19 Outbreak. Could Bacillus Calmette–Guérin Vaccine Be Effective Against SARS-CoV2? Front Pharmacol. 2021;12. doi:10.3389/FPHAR.2021.646570/PDF.
Khanum I, Kumar L, Awan S, Jamil B. Severity of COVID-19 in bacillus Calmette-Guérin vaccinated population. Clin Exp Vaccine Res. 2021;10(3):276.
Ramos-Martinez E, Falfán-Valencia R, Pérez-Rubio G, Andrade WA, Rojas-Serrano J, Ambrocio-Ortiz E, et al. Effect of BCG Revaccination on Occupationally Exposed Medical Personnel Vaccinated against SARS-CoV-2. Cells 2021, Vol 10, Page 3179. 2021;10(11):3179.
Moghadam SO, Abbasi B, Nowroozi A, Amini E, Nowroozi MR, Momeni SA, et al. A possible protective role for Bacillus Calmette-Guérin therapy in urinary bladder cancer in the era of COVID-19: a brief report. Clin Exp Vaccine Res. 2021;10(2):191–195.
Karabay O, Köse O, Tocoglu A, Uysal B, Dheir H, Yaylaci S, et al. Investigation of the frequency of COVID-19 in patients treated with intravesical BCG. Rev Assoc Med Bras. 2020;66Suppl 2(Suppl 2):91–95.
Glynn JR, Dube A, Fielding K, Crampin AC, Kanjala C, Fine PEM. The effect of BCG revaccination on all-cause mortality beyond infancy: 30-year follow-up of a population-based, double-blind, randomised placebo-controlled trial in Malawi. Lancet Infect Dis. 2021;21(11):1590–1597.
Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, Nistal-Villan E, Ochando J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front Immunol. 2021;12:632478.
Fattorini L, Creti R, Palma C, Pantosti A, Unit of Antibiotic Resistance and Special Pathogens, Unit of Antibiotic Resistance and Special Pathogens of the Department of Infectious Diseases, Istituto Superiore di Sanità, Rome. Bacterial coinfections in COVID-19: an underestimated adversary. Ann Ist Super Sanita. 2020;56(3):359–364.
Khurana AK, Aggarwal D. The (in)significance of TB and COVID-19 co-infection. European Respiratory Journal. 2020;56(2). doi:10.1183/13993003.02328-2020.
Sy KTL, Haw NJL, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect Dis (Auckl). 2020;52(12). doi:10.1080/23744235.2020.1806353.
Rivas N, Espinoza M, Loban A, Luque O, Jurado J, Henry-Hurtado N, et al. Case Report: COVID-19 Recovery from Triple Infection with Mycobacterium tuberculosis, HIV, and SARS-CoV-2. Am J Trop Med Hyg. 2020. doi:10.4269/ajtmh.20-0756.
Ata F, Hussein MSM, Mismar AY, Sharma R, Bozom IAM, Ibrahim ZAA, et al. Rifampicin-induced pneumonitis mimicking severe covid-19 pneumonia infection. Am J Case Rep. 2020;21:1–5.
Nadolinskaia NI, Karpov DS, Goncharenko A V. Vaccines Against Tuberculosis: Problems and Prospects (Review). Appl Biochem Microbiol. 2020;56(5):497–504.
Prygiel M, Janaszek-Seydlitz W, Bucholc B. SKUTECZNOŚĆ I BEZPIECZEŃSTWO SZCZEPIONEK PRZECIWKO GRUŹLICY A ZMIENNOŚĆ GENETYCZNA SZCZEPÓW MYCOBACTERIUM BOVIS BCG [EFFICACY AND SAFETY OF VACCINES AGAINST TUBERCULOSIS IN THE RELATION TO GENETIC VARIABILITY OF MYCOBACTERIUM BOVIS BCG STRAINS]. Przegl Epidemiol. 2011;65(4):621–628.
D’Andrea D, Gontero P, Shariat SF, Soria F. Intravesical bacillus Calmette-Guérin for bladder cancer: are all the strains equal? Transl Androl Urol. 2019;8(1):85.
Curtis N. BCG vaccination and all-cause neonatal mortality. Pediatr Infect Dis J. 2019;38(2):195–197.
Kremenovic M, Schenk M, Lee DJ. Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med. 2020;288(6):625–640.
Hilligan KL, Namasivayam S, Clancy CS, O’Mard D, Oland SD, Robertson SJ, et al. Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. bioRxiv. 2021. doi:10.1101/2021.08.30.458273.
Eggenhuizen PJ, Ng BH, Chang J, Fell AL, Cheong RMY, Wong WY, et al. BCG Vaccine Derived Peptides Induce SARS-CoV-2 T Cell Cross-Reactivity. Front Immunol. 2021;12. doi:10.3389/FIMMU.2021.692729/PDF.
Nuovo G, Tili E, Suster D, Matys E, Hupp L, Magro C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann Diagn Pathol. 2020;48. doi:10.1016/j.anndiagpath.2020.151600.
Urbán S, Paragi G, Burián K, McLean GR, Virok DP. Identification of similar epitopes between severe acute respiratory syndrome coronavirus-2 and Bacillus Calmette–Guérin: potential for cross-reactive adaptive immunity. Clin Transl Immunol. 2020;9(12):e1227.
Tomita Y, Sato R, Ikeda T, Sakagami T. BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis. Vaccine. 2020;38(41):6352.
Glisic S, Perovic VR, Sencanski M, Paessler S, Veljkovic V. Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2. J Proteome Res. 2020;19(11):4649–4654.
Haddad-Boubaker S, Othman H, Touati R, Ayouni K, Lakhal M, Ben Mustapha I, et al. In silico comparative study of SARS-CoV-2 proteins and antigenic proteins in BCG, OPV, MMR and other vaccines: evidence of a possible putative protective effect. BMC Bioinformatics. 2021;22(1). doi:10.1186/S12859-021-04045-3.
Chowdhury UN, Faruqe MO, Mehedy M, Ahmad S, Islam MB, Shoombuatong W, et al. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med. 2021;138. doi:10.1016/J.COMPBIOMED.2021.104891.
Ahmed SM, Nasr MA, Elshenawy SE, Hussein AE, El-Betar AH, Mohamed RH, et al. BCG vaccination and the risk of COVID 19: A possible correlation. Virology. 2022;565:81.
Kumar NP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jayadeepa B, et al. BCG vaccination induces enhanced frequencies of memory T cells and altered plasma levels of common γc cytokines in elderly individuals. PLoS One. 2021;16(11):e0258743.
Kumar NP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jeyadeepa B, et al. BCG vaccination induces enhanced frequencies of dendritic cells and altered plasma levels of type I and type III interferons in elderly individuals. Int J Infect Dis. 2021;110:98–104.
Nachega JB, Maeurer M, Sam-Agudu NA, Chakaya J, Katoto PDM, Zumla A. Bacille Calmette-Guérin (BCG) vaccine and potential cross-protection against SARS-CoV-2 infection - Assumptions, knowns, unknowns and need for developing an accurate scientific evidence base. Int J Infect Dis. 2021. doi:10.1016/J.IJID.2021.03.060.
Baskar P V., Collins GD, Dorsey-Cooper BA, Pyle RS, Nagel JE, Dwyer D, et al. Serum antibodies to HIV-1 are produced post-measles virus infection: Evidence for cross-reactivity with HLA. Clin Exp Immunol. 1998;111(2):251–256.
Bertholet S, Ireton GC, Kahn M, Guderian J, Mohamath R, Stride N, et al. Identification of Human T Cell Antigens for the Development of Vaccines against Mycobacterium tuberculosis. J Immunol. 2008;181(11):7948–7957.
Zhou Z, Zhang X, Li Q, Fu L, Wang M, Liu S, et al. Unmethylated CpG motif-containing genomic DNA fragments of bacillus calmette-guerin improves immune response towards a DNA vaccine for COVID-19. Vaccine. 2021;39(41):6050–6056.
Laviada-Molina HA, Leal-Berumen I, Rodriguez-Ayala E, Bastarrachea RA. Working Hypothesis for Glucose Metabolism and SARS-CoV-2 Replication: Interplay Between the Hexosamine Pathway and Interferon RF5 Triggering Hyperinflammation. Role of BCG Vaccine? Front Endocrinol (Lausanne). 2020;11:514.
Arts RJW, Carvalho A, La Rocca C, Palma C, Rodrigues F, Silvestre R, et al. Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Rep. 2016;17(10):2562–2571.
Charoenlap S, Piromsopa K, Charoenlap C. Potential role of Bacillus Calmette-Guérin (BCG) vaccination in COVID-19 pandemic mortality: Epidemiological and Immunological aspects. Asian Pacific J Allergy Immunol. 2020;38(3). doi:10.12932/ap-310520-0863.
Gallegos H, Rojas PA, Sepúlveda F, Zúñiga Á, San Francisco IF. Protective role of intravesical BCG in COVID-19 severity. BMC Urol. 2021;21(1). doi:10.1186/S12894-021-00823-6.
Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC, Saeed S, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109(43):17537–17542.
Morrison AL, Sharpe S, White AD, Bodman-Smith M. Cheap and Commonplace: Making the Case for BCG and γδ T Cells in COVID-19. Front Immunol. 2021;12. doi:10.3389/FIMMU.2021.743924/PDF.
Wannigama DL, Jacquet A. NOD2-dependent BCG-induced trained immunity: A way to regulate innate responses to SARS-CoV2? Int J Infect Dis. 2020;101:52.
Aspatwar A, Gong W, Wang S, Wu X, Parkkila S. Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. Int Rev Immunol. 2021. doi:10.1080/08830185.2021.1922685.
Covián C, Retamal-Díaz A, Bueno SM, Kalergis AM. Could BCG Vaccination Induce Protective Trained Immunity for SARS-CoV-2? Front Immunol. 2020;11. doi:10.3389/fimmu.2020.00970.
Singh MK, Jain M, Shyam H, Shankar P, Singh V. Associated pathogenesis of bladder cancer and SARS-CoV-2 infection: a treatment strategy. Virusdisease. 2021. doi:10.1007/S13337-021-00742-Y.
Acharya D, Liu GQ, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol 2020 207. 2020;20(7):397–398.
Akan S, Ediz C, Kızılkan YE, Alcin A, Tavukcu HH, Yilmaz O. COVID-19 infection threat in patients with high-risk non-muscle invasive bladder cancer receiving intravesical BCG therapy. Int J Clin Pract. 2021;75(3). doi:10.1111/IJCP.13752.
Freij BJ, Gebara BM, Tariq R, Wang AM, Gibson J, El-Wiher N, et al. Fatal central nervous system co-infection with SARS-CoV-2 and tuberculosis in a healthy child. BMC Pediatr. 2020;20(1):429.
Mohammed H, Oljira L, Roba KT, Yimer G, Fekadu A, Manyazewal T. Containment of COVID-19 in Ethiopia and implications for tuberculosis care and research. Infectious diseases of poverty. 2020;9(1):131.
Mukwenha S, Dzinamarira T, Mugurungi O, Musuka G. Journal Pre-proof Maintaining robust HIV and TB services in the COVID-19 era: A public health dilemma in Zimbabwe. Int J Infect Dis. 2020;0(0). doi:10.1016/j.ijid.2020.09.1425.
Chiang C-Y, Islam T, Xu C, Chinnayah T, Garfin AMC, Rahevar K, et al. The impact of COVID-19 and the restoration of tuberculosis services in the Western Pacific Region (revised). Eur Respir J. 2020;2003054.
Bhatia V, Mandal P, Satyanarayana S, Aditama T, Sharma M. Mitigating the impact of the COVID-19 pandemic on progress towards ending tuberculosis in the WHO South-East Asia Region. WHO South-East Asia J Public Heal. 2020;9(2):95.
Singh A, Prasad R, Gupta A, Das K, Gupta N. Severe acute respiratory syndrome coronavirus-2 and pulmonary tuberculosis: convergence can be fatal. Monaldi Archives for Chest Disease. 2020;9(3):441–450.
Liu Q, Lu P, Shen Y, Li C, Wang J, Zhu L, et al. Collateral Impact of the Covid-19 Pandemic on Tuberculosis Control in Jiangsu Province, China. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1289.
Mateiro Gomes BL, Carvalho I. Tuberculosis — Reaping benefits from COVID-19 in Portugal. Pulmonology. 2020. doi:10.1016/j.pulmoe.2020.08.006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jakub Krzysztof Gałązka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 419
Number of citations: 0