Circadian rhythm and heart disease - what is the link? A review
DOI:
https://doi.org/10.12775/JEHS.2022.12.12.007Keywords
Circadian rhythm, Blood pressure, Chronotherapy, Cardiovascular diseaseAbstract
Introduction and purpose: Cardiovascular disease (CVD) is still the leading cause of death worldwide and causes 49% of mortality in Europe. This makes CVD is the most important reason for premature mortality and Disability Adjusted Life Years (“DALYS”) in that continent. It is associated with variables such as blood pressure, heart rate, circulating catecholamines, markers of blood coagulation and vascular endothelial function which are dependent on different times of the day. The epidemiological data indicate that the biggest number of CVD incidents occur during the early morning hours. In this work we try to discuss the circadian rhythm and its impact on variables which, according to data, are most crucial on CV incident rate.
Brief description of the state of knowledge: The cardiovascular disease and mortality risk is associated with variables such as morning blood pressure, fluctuations in metabolism rate or even in immunological response. These variables are dependent on the circadian rhythm. This article covers the most crucial components affected by the daily fluctuations considering the heart according to the literature from the last five years.
Conclusions: This review highlighted the link between circadian rhythm and cardiovascular disease with the purpose of focusing on the most important clinically aspects of that machinery from blood pressure to inflammation. Despite all of these exciting findings which could possibly have future implications in the field of cardiology, there is still a significant need to explore this complicated relationship between the biological clock and the heart.
References
Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest. 2018;128(6):2157-2167. doi:10.1172/JCI80590
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20(4):287-307. doi:10.1038/s41573-020-00109-w
Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol. 2019;16(7):437-447. doi:10.1038/s41569-019-0167-4
Black N, D'Souza A, Wang Y, et al. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm. 2019;16(2):298-307. doi:10.1016/j.hrthm.2018.08.026
Yan X, Huang Y, Wu J. Identify Cross Talk Between Circadian Rhythm and Coronary Heart Disease by Multiple Correlation Analysis. J Comput Biol. 2018;25(12):1312-1327. doi:10.1089/cmb.2017.0254
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu Rev Nutr. 2019;39:291-315. doi:10.1146/annurev-nutr-082018-124320
Zhang L, Jain MK. Circadian regulation of cardiac metabolism. J Clin Invest. 2021;131(15):e148276. doi:10.1172/JCI148276
Francula-Zaninovic S, Nola IA. Management of Measurable Variable Cardiovascular Disease' Risk Factors. Curr Cardiol Rev. 2018;14(3):153-163. doi:10.2174/1573403X14666180222102312
Booth JN 3rd, Jaeger BC, Huang L, et al. Morning Blood Pressure Surge and Cardiovascular Disease Events and All-Cause Mortality in Blacks: The Jackson Heart Study. Hypertension. 2020;75(3):835-843. doi:10.1161/HYPERTENSIONAHA.119.14233
Peter-Derex L, Derex L. Wake-up stroke: From pathophysiology to management. Sleep Med Rev. 2019;48:101212. doi:10.1016/j.smrv.2019.101212
Bartman CM, Eckle T. Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Curr Pharm Des. 2019;25(10):1075-1090. doi:10.2174/1381612825666190516081612
Luo D, Cheng Y, Zhang H, et al. Association between high blood pressure and long term cardiovascular events in young adults: systematic review and meta-analysis. BMJ. 2020;370:m3222. Published 2020 Sep 9. doi:10.1136/bmj.m3222
Mehra R. Sleep apnea and the heart. Cleve Clin J Med. 2019;86(9 Suppl 1):10-18. doi:10.3949/ccjm.86.s1.03
Douma LG, Gumz ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med. 2018;119:108-114. doi:10.1016/j.freeradbiomed.2017.11.024
Ohashi, N., Isobe, S., Ishigaki, S. et al. Circadian rhythm of blood pressure and the renin–angiotensin system in the kidney. Hypertens Res 40, 413–422 (2017). https://doi.org/10.1038/hr.2016.166
Rahman, A., Hitomi, H. & Nishiyama, A. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure. Hypertens Res 40, 535–540 (2017). https://doi.org/10.1038/hr.2016.193
Khaper N, Bailey CDC, Ghugre NR, et al. Implications of disturbances in circadian rhythms for cardiovascular health: A new frontier in free radical biology. Free Radic Biol Med. 2018;119:85-92. doi:10.1016/j.freeradbiomed.2017.11.006
Fioranelli M, Bottaccioli AG, Bottaccioli F, Bianchi M, Rovesti M, Roccia MG. Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Front Immunol. 2018;9:2031. Published 2018 Sep 6. doi:10.3389/fimmu.2018.02031
Yoshida Y, Matsunaga N, Nakao T, et al. Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat Commun. 2021;12(1):2783. Published 2021 May 13. doi:10.1038/s41467-021-23050-x
Aziz IS, McMahon AM, Friedman D, Rabinovich-Nikitin I, Kirshenbaum LA, Martino TA. Circadian influence on inflammatory response during cardiovascular disease. Curr Opin Pharmacol. 2021;57:60-70. doi:10.1016/j.coph.2020.11.007
Epelman, S., Liu, P. & Mann, D. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15, 117–129 (2015). https://doi.org/10.1038/nri3800
Morris CJ, Purvis TE, Mistretta J, Hu K, Scheer FAJL. Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers. Journal of Biological Rhythms. 2017;32(2):154-164. doi:10.1177/0748730417697537
Toldo, S., Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 15, 203–214 (2018). https://doi.org/10.1038/nrcardio.2017.161
Wang S., Lin Y., Yuan X., Li F., Guo L., Wu B.: REV-ERBalpha integrates colon clock with experimental colitis through regulation of NF-kappaB/NLRP3 axis. Nat Commun 2018; 9: pp. 4246.
Soehnlein O, Libby P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610. doi:10.1038/s41573-021-00198-1
Costa J, Alarcão J, Araujo F, et al. The burden of atherosclerosis in Portugal. Eur Heart J Qual Care Clin Outcomes. 2021;7(2):154-162. doi:10.1093/ehjqcco/qcaa060
Kumar, S.; Kumar, N.; Kumar, H.; Niazi, R.A.; Rashid, M.F. Circadian Variation In The Onset Of Acute Myocardial Infarction In Diabetics. J. Ayub Med. Coll. Abbottabad Jamc 2018, 30, 71–73.
Man AWC, Li H, Xia N. Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci. 2021;22(2):676. Published 2021 Jan 12. doi:10.3390/ijms22020676
Pan X, Mota S, Zhang B. Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases. Adv Exp Med Biol. 2020;1276:53-66. doi:10.1007/978-981-15-6082-8_5
Fishbein AB, Knutson KL, Zee PC. Circadian disruption and human health. J Clin Invest. 2021;131(19):e148286. doi:10.1172/JCI148286
Baschieri F, Cortelli P. Circadian rhythms of cardiovascular autonomic function: Physiology and clinical implications in neurodegenerative diseases. Auton Neurosci. 2019;217:91-101. doi:10.1016/j.autneu.2019.01.009
Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340. doi:10.1016/j.smrv.2020.101340
Hermida RC, Crespo JJ, Domínguez-Sardiña M, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial. Eur Heart J. 2020;41(48):4565-4576. doi:10.1093/eurheartj/ehz754
Kario K, Hoshide S, Mizuno H, et al. Nighttime Blood Pressure Phenotype and Cardiovascular Prognosis: Practitioner-Based Nationwide JAMP Study [published correction appears in Circulation. 2020 Dec 22;142(25):e632]. Circulation. 2020;142(19):1810-1820. doi:10.1161/CIRCULATIONAHA.120.049730
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol. 2021 Dec 1;78(Suppl 6):S63-S77. doi: 10.1097/FJC.0000000000001154. PMID: 34840264.
Xu W, Li L, Zhang L. NAD+ Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol. 2020 Aug 13;11:901. doi: 10.3389/fphys.2020.00901. PMID: 32903597; PMCID: PMC7438569.
Liu, F.; Zhang, X.; Zhao, B.; Tan, X.; Wang, L.; Liu, X. Role of Food Phytochemicals in the Modulation of Circadian Clocks. J. Agric. Food Chem. 2019, 67, 8735–8739.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Agnieszka Brzezińska, Aleksandra Skorupa, Aleksandra Nowińska, Justyna Nowaczek
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 358
Number of citations: 0