The use of artificial intelligence in nephrology
DOI:
https://doi.org/10.12775/JEHS.2022.12.09.083Keywords
artificial intelligence, nephrology, AI, dialysisAbstract
Introduction and methods
Artificial Intelligence(AI) is a relatively new branch of science that studies the display of intelligent behavior by machines and its use in advanced analysis and computation. Due to the potential use of AI, it has also been introduced into medicine and nephrology.
The following article is an analysis of the current knowledge on the potential of AI in nephrology and its relevance to clinicians based on the latest publications contained in the PubMed and Google Scholar databases.
Stage of knowledge
AI found its application in the prognosis of the development of IgA nephropathy thanks to the use of a neural network, which by analyzing the results of research and the drugs used in a large group of patients has learned to detect patients at high risk of developing severe complications at the beginning of the disease. What is more, AI makes it possible to detect DKD earlier and delay renal replacement therapy. In patients undergoing hemodialysis, artificial intelligence developed a model that calculated the appropriate duration of the procedure and adjusted drugs to control blood pressure. Another example of the use of AI is its use in relation to patients undergoing kidney transplantation. The AI calculates the beneficial concentration of an immunosuppressive drug specifically for a given patient, which allows clinicians to limit adverse effects.
Summary
AI is a breakthrough technology that is constantly being developed. Despite the high cost of implementing this technology, it is believed that it could represent the future of medicine and be a new way in treatment techniques and in the early detection of diseases in nephrology.
References
Yuan Q, Zhang H, Deng T, Tang S, Yuan X, Tang W, Xie Y, Ge H, Wang X, Zhou Q, Xiao X. Role of Artificial Intelligence in Kidney Disease. Int J Med Sci. 2020 Apr 6;17(7):970-984. doi: 10.7150/ijms.42078.
Rashidi P, Bihorac A. Artificial intelligence approaches to improve kidney care. Nat Rev Nephrol. 2020 Feb;16(2):71-72. doi: 10.1038/s41581-019-0243-3.
Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004 Sep;86(5):334-8. doi: 10.1308/147870804290.
Chen M, Decary M. Artificial intelligence in healthcare: An essential guide for health leaders. Healthc Manage Forum. 2020 Jan;33(1):10-18. doi: 10.1177/0840470419873123.
Rajasekaran A, Julian BA, Rizk DV. IgA Nephropathy: An Interesting Autoimmune Kidney Disease. Am J Med Sci. 2021 Feb;361(2):176-194. doi: 10.1016/j.amjms.2020.10.003.
Coppo R. Treatment of IgA nephropathy: Recent advances and prospects. Nephrol Ther. 2018 Apr;14 Suppl 1:S13-S21. doi: 10.1016/j.nephro.2018.02.010.
Lafayette RA, Kelepouris E. Immunoglobulin A Nephropathy: Advances in Understanding of Pathogenesis and Treatment. Am J Nephrol. 2018;47 Suppl 1:43-52. doi: 10.1159/000481636.
Niel O, Bastard P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am J Kidney Dis. 2019 Dec;74(6):803-810. doi: 10.1053/j.ajkd.2019.05.020
Geddes CC, Fox JG, Allison ME, Boulton-Jones JM, Simpson K. An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists. Nephrol Dial Transplant. 1998 Jan;13(1):67-71. doi: 10.1093/ndt/13.1.67.
World Health Organization. Global status report on noncommunicable diseases 2014. No. WHO/NMH/NVI/15.1. World Health Organization, 2014.
de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011 Jun 22;305(24):2532-9. doi: 10.1001/jama.2011.861.
Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2018 Mar;71(3 Suppl 1):A7. doi: 10.1053/j.ajkd.2018.01.002. Erratum in: Am J Kidney Dis. 2018 Apr;71(4):501.
Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am. 2013 Jan;97(1):1-18. doi: 10.1016/j.mcna.2012.10.001.
Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH, Cooper ME. Diabetic kidney disease. Nat Rev Dis Primers. 2015 Jul 30;1:15018. doi: 10.1038/nrdp.2015.18.
Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A, Kudo M, Haida K, Kuroda J, Yanagiya R, Saitoh E, Hoshinaga K, Yuzawa Y, Suzuki A. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019 Aug 14;9(1):11862. doi: 10.1038/s41598-019-48263-5. PMID: 31413285; PMCID: PMC6694113.
Hueso M, Vellido A. Artificial Intelligence and Dialysis. Kidney Dis (Basel). 2019 Feb;5(1):1-2. doi: 10.1159/000493933.
Hueso M, Navarro E, Sandoval D, Cruzado JM. Progress in the development and challenges for the use of artificial kidneys and wearable dialysis devices. Kidney Dis. 2019;5:3–10.
Davenport A, Cox C, Thuraisingham R. Achieving blood pressure targets during dialysis improves control but increases intradialytic hypotension. Kidney Int. 2008 Mar;73(6):759-64. doi: 10.1038/sj.ki.5002745.
Chou JA, Streja E, Nguyen DV, Rhee CM, Obi Y, Inrig JK, Amin A, Kovesdy CP, Sim JJ, Kalantar-Zadeh K. Intradialytic hypotension, blood pressure changes and mortality risk in incident hemodialysis patients. Nephrol Dial Transplant. 2018 Jan 1;33(1):149-159. doi: 10.1093/ndt/gfx037.
Barbieri C, Cattinelli I, Neri L, Mari F, Ramos R, Brancaccio D, Canaud B, Stuard S. Development of an Artificial Intelligence Model to Guide the Management of Blood Pressure, Fluid Volume, and Dialysis Dose in End-Stage Kidney Disease Patients: Proof of Concept and First Clinical Assessment. Kidney Dis (Basel). 2019 Feb;5(1):28-33. doi: 10.1159/000493479.
Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Ion Titapiccolo J, Mari F, Amato C, Leipold F, Wehmeyer W, Stuard S, Stopper A, Canaud B. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016 Aug;90(2):422-429. doi: 10.1016/j.kint.2016.03.036.
Teitelbaum I. Peritoneal Dialysis. N Engl J Med. 2021 Nov 4;385(19):1786-1795. doi: 10.1056/NEJMra2100152.
Cho Y, Bello AK, Levin A, et al. Peritoneal dialysis use and practice patterns: an international survey study. Am J Kidney Dis 2021;77:315-325.
Cho Y, Johnson DW. Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes. Am J Kidney Dis. 2014 Aug;64(2):278-89. doi: 10.1053/j.ajkd.2014.02.025.
Li PK, Szeto CC, Piraino B, de Arteaga J, Fan S, Figueiredo AE, Fish DN, Goffin E, Kim YL, Salzer W, Struijk DG, Teitelbaum I, Johnson DW. ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment. Perit Dial Int. 2016 Sep 10;36(5):481-508. doi: 10.3747/pdi.2016.00078. Epub 2016 Jun 9. Erratum in: Perit Dial Int. 2018 Jul-Aug;38(4):313..
Zhang J, Friberg IM, Kift-Morgan A, Parekh G, Morgan MP, Liuzzi AR, Lin CY, Donovan KL, Colmont CS, Morgan PH, Davis P, Weeks I, Fraser DJ, Topley N, Eberl M. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections. Kidney Int. 2017 Jul;92(1):179-191. doi: 10.1016/j.kint.2017.01.017.
Bieber SD, Anderson AE, Mehrotra R. Diagnostic testing for peritonitis in patients undergoing peritoneal dialysis. Semin Dial. 2014 Nov-Dec;27(6):602-6. doi: 10.1111/sdi.12270..
Plosker GL, Foster RH. Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs. 2000 Feb;59(2):323-89. doi: 10.2165/00003495-200059020-00021.
Staatz C, Taylor P, Tett S. Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol Dial Transplant. 2001 Sep;16(9):1905-9. doi: 10.1093/ndt/16.9.1905.
Undre NA, van Hooff J, Christiaans M, Vanrenterghem Y, Donck J, Heeman U, Kohnle M, Zanker B, Land W, Morales JM, Andrés A, Schäfer A, Stevenson P. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant Proc. 1999 Feb-Mar;31(1-2):296-8. doi: 10.1016/s0041-1345(98)01633-9.
Thishya K, Vattam KK, Naushad SM, Raju SB, Kutala VK. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS One. 2018 Apr 5;13(4):e0191921. doi: 10.1371/journal.pone.0191921.
Niel O, Bastard P. Artificial intelligence improves estimation of tacrolimus area under the concentration over time curve in renal transplant recipients. Transpl Int. 2018 Aug;31(8):940-941. doi: 10.1111/tri.13271.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Weronika Buczek, Mikołaj Wiśniewski, Rafał Oleszczuk, Iga Kozińska, Maciej Orczykowski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 383
Number of citations: 0