Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

The neuroinflammation origin of autism spectrum disorder (ASD) – the literature review
  • Home
  • /
  • The neuroinflammation origin of autism spectrum disorder (ASD) – the literature review
  1. Home /
  2. Archives /
  3. Vol. 84 (2025) /
  4. Medical Sciences

The neuroinflammation origin of autism spectrum disorder (ASD) – the literature review

Authors

  • Michalina Pytka Student's Scientific Club of Department of Applied Psychology, Medical University of Lublin, https://orcid.org/0000-0002-4813-9357
  • Weronika Dalmata Student's Scientific Club of Department of Applied Psychology, Medical University of Lublin, https://orcid.org/0000-0003-0529-5998
  • Paulina Należna Student's Scientific Club of Department of Applied Psychology, Medical University of Lublin, https://orcid.org/0000-0001-5406-1288

DOI:

https://doi.org/10.12775/JEHS.2025.84.39926

Keywords

ASD, gut microbiota, tryptophan, histaminergic pathway, kynurenine pathway

Abstract

Introduction and state of the knowledge: The origin of neuroinflammation in autism spectrum disorder (ASD) remains unknown. The presence of immunological dysregulation in ASD is observed as abnormalities in lymphocytes subpopulations and alterations in pro-inflammatory cytokines' levels. Also kynurenine and histaminergic pathways are dysregulated, causing additional changes in the brain's structure and physiology. Inflammatory status include intestines as well the gut microbiota present characteristic features in ASD.

Materials and methods: The literature search was done using PubMed database up, focusing on the newest knowledge concerning ASD.

 

Aim: The aim of this review is to summarise the newest knowledge about molecular basis of neuroinflammation in ASD, to distinguish target molecules, that can predict autism's onset and to find dietary solutions, that can alleviate autistic behavioral features by tackling histaminergic and tryptophan pathways.

Conclusion: Concerning chronic inflammatory state's presence in ASD, exact target molecules' levels can be checked in order to proove changes in immune system. To allieviate symptoms such as social cognition, meditherian diet, probiotics, magnesium, B vitamins and physical excercises are highly recommended.

References

Alhowikan, A. M., Al-Ayadhi, L. Y., & Halepoto, D. M. (2019). Impact of environmental pollution, dietary factors and diabetes mellitus on Autism Spectrum Disorder (ASD). Pakistan journal of medical sciences, 35(4), 1179–1184. https://doi.org/10.12669/pjms.35.4.269

Carbone, E., Manduca, A., Cacchione, C., Vicari, S., & Trezza, V. (2021). Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neuroscience and biobehavioral reviews, 121, 128–143. https://doi.org/10.1016/j.neubiorev.2020.12.009

Ellul, P., Rosenzwajg, M., Peyre, H., Fourcade, G., Mariotti-Ferrandiz, E., Trebossen, V., Klatzmann, D., & Delorme, R. (2021). Regulatory T lymphocytes/Th17 lymphocytes imbalance in autism spectrum disorders: evidence from a meta-analysis. Molecular autism, 12(1), 68. https://doi.org/10.1186/s13229-021-00472-4

Loomes, R., Hull, L., & Mandy, W. (2017). What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(6), 466–474. https://doi.org/10.1016/j.jaac.2017.03.013

Styles, M., Alsharshani, D., Samara, M., Alsharshani, M., Khattab, A., Qoronfleh, M. W., & Al-Dewik, N. I. (2020). Risk factors, diagnosis, prognosis and treatment of autism. Frontiers in bioscience (Landmark edition), 25(9), 1682–1717. https://doi.org/10.2741/4873

Varga, N. Á., Pentelényi, K., Balicza, P., Gézsi, A., Reményi, V., Hársfalvi, V., Bencsik, R., Illés, A., Prekop, C., & Molnár, M. J. (2018). Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behavioral and brain functions : BBF, 14(1), 4. https://doi.org/10.1186/s12993-018-0135-x

Oztenekecioglu, B., Mavis, M., Osum, M., & Kalkan, R. (2021). Genetic and Epigenetic Alterations in Autism Spectrum Disorder. Global medical genetics, 8(4), 144–148. https://doi.org/10.1055/s-0041-1735540

Marlborough, M., Welham, A., Jones, C., Reckless, S., & Moss, J. (2021). Autism spectrum disorder in females with fragile X syndrome: a systematic review and meta-analysis of prevalence. Journal of neurodevelopmental disorders, 13(1), 28. https://doi.org/10.1186/s11689-021-09362-5

Kujabi, M. L., Petersen, J. P., Pedersen, M. V., Parner, E. T., & Henriksen, T. B. (2021). Neonatal jaundice and autism spectrum disorder: a systematic review and meta-analysis. Pediatric research, 90(5), 934–949. https://doi.org/10.1038/s41390-020-01272-x

Schwartz C. E. (2014). Aberrant tryptophan metabolism: the unifying biochemical basis for autism spectrum disorders?. Biomarkers in medicine, 8(3), 313–315. https://doi.org/10.2217/bmm.14.11

Wu, S., Wu, F., Ding, Y., Hou, J., Bi, J., & Zhang, Z. (2017). Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta psychiatrica Scandinavica, 135(1), 29–41. https://doi.org/10.1111/acps.12666

Sauer, A. K., Stanton, J. E., Hans, S., & Grabrucker, A. M. (2021). Autism Spectrum Disorders: Etiology and Pathology. In A. M. Grabrucker (Ed.), Autism Spectrum Disorders. Exon Publications.

NHS – Signs of autism in children, https://www.nhs.uk/conditions/autism/signs/children/?fbclid=IwAR2oK_1PtgC6OIroEQlDWhZ1f9bdiqftaNqW-WDO_SxbGvAIscGL5KDFZnw access: 11.08.2022

Pendergrass, S., Girirajan, S., & Selleck, S. (2014). Uncovering the etiology of autism spectrum disorders: genomics, bioinformatics, environment, data collection and exploration, and future possibilities. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 422–426.

Pennisi, P., Giallongo, L., Milintenda, G., & Cannarozzo, M. (2021). Autism, autistic traits and creativity: a systematic review and meta-analysis. Cognitive processing, 22(1), 1–36. https://doi.org/10.1007/s10339-020-00992-6

Baxter, A. J., Brugha, T. S., Erskine, H. E., Scheurer, R. W., Vos, T., & Scott, J. G. (2015). The epidemiology and global burden of autism spectrum disorders. Psychological medicine, 45(3), 601–613. https://doi.org/10.1017/S003329171400172X

Davignon, M. N., Qian, Y., Massolo, M., & Croen, L. A. (2018). Psychiatric and Medical Conditions in Transition-Aged Individuals With ASD. Pediatrics, 141(Suppl 4), S335–S345. https://doi.org/10.1542/peds.2016-4300K

Schendel, D. E., Overgaard, M., Christensen, J., Hjort, L., Jørgensen, M., Vestergaard, M., & Parner, E. T. (2016). Association of Psychiatric and Neurologic Comorbidity With Mortality Among Persons With Autism Spectrum Disorder in a Danish Population. JAMA pediatrics, 170(3), 243–250. https://doi.org/10.1001/jamapediatrics.2015.3935

Hossain, M. D., Kabir, M. A., Anwar, A., & Islam, M. Z. (2021). Detecting autism spectrum disorder using machine learning techniques: An experimental analysis on toddler, child, adolescent and adult datasets. Health information science and systems, 9(1), 17. https://doi.org/10.1007/s13755-021-00145-9

Bi, X. A., Liu, Y., Jiang, Q., Shu, Q., Sun, Q., & Dai, J. (2018). The Diagnosis of Autism Spectrum Disorder Based on the Random Neural Network Cluster. Frontiers in human neuroscience, 12, 257. https://doi.org/10.3389/fnhum.2018.00257

Wallis, K. E., & Guthrie, W. (2020). Identifying Autism Spectrum Disorder in Real-World Health Care Settings. Pediatrics, 146(2), e20201467. https://doi.org/10.1542/peds.2020-1467

Wieckowski, A. T., Hamner, T., Nanovic, S., Porto, K. S., Coulter, K. L., Eldeeb, S. Y., Chen, C. A., Fein, D. A., Barton, M. L., Adamson, L. B., & Robins, D. L. (2021). Early and Repeated Screening Detects Autism Spectrum Disorder. The Journal of pediatrics, 234, 227–235. https://doi.org/10.1016/j.jpeds.2021.03.009

O'Neill, M., & Shear, T. (2018). EEG for Diagnosis of Autism Spectrum Disorder. Pediatric neurology briefs, 32, 13. https://doi.org/10.15844/pedneurbriefs-32-13

Pan, P. Y., Bölte, S., Kaur, P., Jamil, S., & Jonsson, U. (2021). Neurological disorders in autism: A systematic review and meta-analysis. Autism : the international journal of research and practice, 25(3), 812–830. https://doi.org/10.1177/1362361320951370

Matta, S. M., Hill-Yardin, E. L., & Crack, P. J. (2019). The influence of neuroinflammation in Autism Spectrum Disorder. Brain, behavior, and immunity, 79, 75–90. https://doi.org/10.1016/j.bbi.2019.04.037

Kern, J. K., Geier, D. A., Sykes, L. K., & Geier, M. R. (2016). Relevance of Neuroinflammation and Encephalitis in Autism. Frontiers in cellular neuroscience, 9, 519. https://doi.org/10.3389/fncel.2015.00519

Toscano, C., Barros, L., Lima, A. B., Nunes, T., Carvalho, H. M., & Gaspar, J. M. (2021). Neuroinflammation in autism spectrum disorders: Exercise as a "pharmacological" tool. Neuroscience and biobehavioral reviews, 129, 63–74. https://doi.org/10.1016/j.neubiorev.2021.07.023

Pellegrini, C., Antonioli, L., Calderone, V., Colucci, R., Fornai, M., & Blandizzi, C. (2020). Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications?. Progress in neurobiology, 191, 101806. https://doi.org/10.1016/j.pneurobio.2020.101806

Doroszkiewicz, J., Groblewska, M., & Mroczko, B. (2021). The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System. International journal of molecular sciences, 22(18), 10028. https://doi.org/10.3390/ijms221810028

Kealy, J., Greene, C., & Campbell, M. (2020). Blood-brain barrier regulation in psychiatric disorders. Neuroscience letters, 726, 133664. https://doi.org/10.1016/j.neulet.2018.06.033

Li, D., Karnath, H. O., & Xu, X. (2017). Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neuroscience bulletin, 33(2), 219–237. https://doi.org/10.1007/s12264-017-0118-1

Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: a review and future directions. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, 23(2-3), 183–187. https://doi.org/10.1016/j.ijdevneu.2004.09.006

Eissa, N., Sadeq, A., Sasse, A., & Sadek, B. (2020). Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also for BPSD?. Frontiers in pharmacology, 11, 886. https://doi.org/10.3389/fphar.2020.00886

Liao, X., Yang, J., Wang, H., & Li, Y. (2020). Microglia mediated neuroinflammation in autism spectrum disorder. Journal of psychiatric research, 130, 167–176. https://doi.org/10.1016/j.jpsychires.2020.07.013

Kim, Y. S., Choi, J., & Yoon, B. E. (2020). Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells, 9(10), 2176. https://doi.org/10.3390/cells9102176

Wright, C., Shin, J. H., Rajpurohit, A., Deep-Soboslay, A., Collado-Torres, L., Brandon, N. J., Hyde, T. M., Kleinman, J. E., Jaffe, A. E., Cross, A. J., & Weinberger, D. R. (2017). Altered expression of histamine signaling genes in autism spectrum disorder. Translational psychiatry, 7(5), e1126. https://doi.org/10.1038/tp.2017.87

Yin, F., Wang, H., Liu, Z., & Gao, J. (2020). Association between peripheral blood levels of C-reactive protein and Autism Spectrum Disorder in children: A systematic review and meta-analysis. Brain, behavior, and immunity, 88, 432–441. https://doi.org/10.1016/j.bbi.2020.04.008

Nadeem, R., Hussain, T., & Sajid, H. (2020). C reactive protein elevation among children or among mothers' of children with autism during pregnancy, a review and meta-analysis. BMC psychiatry, 20(1), 251. https://doi.org/10.1186/s12888-020-02619-8

Turner, J. A., Stephen-Victor, E., Wang, S., Rivas, M. N., Abdel-Gadir, A., Harb, H., Cui, Y., Fanny, M., Charbonnier, L. M., Fong, J., Benamar, M., Wang, L., Burton, O. T., Bansal, K., Bry, L., Zhu, C., Li, Q. Z., Clement, R. L., Oettgen, H. C., Crestani, E., … Chatila, T. A. (2020). Regulatory T Cell-Derived TGF-β1 Controls Multiple Checkpoints Governing Allergy and Autoimmunity. Immunity, 53(6), 1202–1214.e6. https://doi.org/10.1016/j.immuni.2020.10.002

Braga, M., Quecchia, C., Cavallucci, E., Di Giampaolo, L., Schiavone, C., Petrarca, C., & Di Gioacchino, M. (2011). T regulatory cells in allergy. International journal of immunopathology and pharmacology, 24(1 Suppl), 55S–64S.

Li, H., Liu, H., Chen, X., Zhang, J., Tong, G., & Sun, Y. (2021). Association of food hypersensitivity in children with the risk of autism spectrum disorder: a meta-analysis. European journal of pediatrics, 180(4), 999–1008. https://doi.org/10.1007/s00431-020-03826-x

Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., & Guastella, A. J. (2015). Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular psychiatry, 20(4), 440–446. https://doi.org/10.1038/mp.2014.59

Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., & Rezaei, N. (2019). Anti-inflammatory cytokines in autism spectrum disorders: A systematic review and meta-analysis. Cytokine, 123, 154740. https://doi.org/10.1016/j.cyto.2019.154740

Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., & Rezaei, N. (2019). A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of psychiatric research, 115, 90–102. https://doi.org/10.1016/j.jpsychires.2019.05.019

Chen, L., Shi, X. J., Liu, H., Mao, X., Gui, L. N., Wang, H., & Cheng, Y. (2021). Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Translational psychiatry, 11(1), 15. https://doi.org/10.1038/s41398-020-01135-3

Platten, M., Ho, P. P., Youssef, S., Fontoura, P., Garren, H., Hur, E. M., Gupta, R., Lee, L. Y., Kidd, B. A., Robinson, W. H., Sobel, R. A., Selley, M. L., & Steinman, L. (2005). Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science (New York, N.Y.), 310(5749), 850–855. https://doi.org/10.1126/science.1117634

Katz, J. B., Muller, A. J., & Prendergast, G. C. (2008). Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunological reviews, 222, 206–221. https://doi.org/10.1111/j.1600-065X.2008.00610.x

Pallotta, M. T., Orabona, C., Volpi, C., Grohmann, U., Puccetti, P., & Fallarino, F. (2010). Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). International journal of tryptophan research : IJTR, 3, 91–97. https://doi.org/10.4137/ijtr.s3971

Anderson, G., & Maes, M. (2014). Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Current neuropharmacology, 12(2), 148–167. https://doi.org/10.2174/1570159X11666131120223757

Bryn, V., Verkerk, R., Skjeldal, O. H., Saugstad, O. D., & Ormstad, H. (2017). Kynurenine Pathway in Autism Spectrum Disorders in Children. Neuropsychobiology, 76(2), 82–88. https://doi.org/10.1159/000488157

Bilgiç, A., Abuşoğlu, S., Sadıç Çelikkol, Ç., Oflaz, M. B., Akça, Ö. F., Sivrikaya, A., Baysal, T., & Ünlü, A. (2022). Altered kynurenine pathway metabolite levels in toddlers and preschool children with autism spectrum disorder. The International journal of neuroscience, 132(8), 826–834. https://doi.org/10.1080/00207454.2020.1841187

Carpita, B., Nardi, B., Palego, L., Cremone, I. M., Massimetti, G., Carmassi, C., Betti, L., Giannaccini, G., & Dell'Osso, L. (2022). Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS spectrums, 1–12. Advance online publication. https://doi.org/10.1017/S1092852922000840

Hilmas, C., Pereira, E. F., Alkondon, M., Rassoulpour, A., Schwarcz, R., & Albuquerque, E. X. (2001). The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(19), 7463–7473. https://doi.org/10.1523/JNEUROSCI.21-19-07463.2001

Cryan, J. F., O'Riordan, K. J., Cowan, C., Sandhu, K. V., Bastiaanssen, T., Boehme, M., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E., O'Connor, R., … Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiological reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018

Savino, R., Carotenuto, M., Polito, A. N., Di Noia, S., Albenzio, M., Scarinci, A., Ambrosi, A., Sessa, F., Tartaglia, N., & Messina, G. (2020). Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway. Brain sciences, 10(9), 631. https://doi.org/10.3390/brainsci10090631

Casanova M. F. (2007). The neuropathology of autism. Brain pathology (Zurich, Switzerland), 17(4), 422–433. https://doi.org/10.1111/j.1750-3639.2007.00100.x

Mosienko, V., Bert, B., Beis, D., Matthes, S., Fink, H., Bader, M., & Alenina, N. (2012). Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Translational psychiatry, 2(5), e122. https://doi.org/10.1038/tp.2012.44

Mayo, J. C., Sainz, R. M., Tan, D. X., Hardeland, R., Leon, J., Rodriguez, C., & Reiter, R. J. (2005). Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. Journal of neuroimmunology, 165(1-2), 139–149. https://doi.org/10.1016/j.jneuroim.2005.05.002

Kennett, G. A., Curzon, G., Hunt, A., & Patel, A. J. (1986). Immobilization decreases amino acid concentrations in plasma but maintains or increases them in brain. Journal of neurochemistry, 46(1), 208–212. https://doi.org/10.1111/j.1471-4159.1986.tb12947.x

Anderson G. M. (2002). Genetics of childhood disorders: XLV. Autism, part 4: serotonin in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 41(12), 1513–1516. https://doi.org/10.1097/00004583-200212000-00025

Rossignol, D. A., & Frye, R. E. (2011). Melatonin in autism spectrum disorders: a systematic review and meta-analysis. Developmental medicine and child neurology, 53(9), 783–792. https://doi.org/10.1111/j.1469-8749.2011.03980.x

D'Eufemia, P., Finocchiaro, R., Celli, M., Viozzi, L., Monteleone, D., & Giardini, O. (1995). Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 49(6), 288–292. https://doi.org/10.1016/0753-3322(96)82645-X

Kałużna-Czaplińska, J., Jóźwik-Pruska, J., Chirumbolo, S., & Bjørklund, G. (2017). Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metabolic brain disease, 32(5), 1585–1593. https://doi.org/10.1007/s11011-017-0045-x

Boccuto, L., Chen, C. F., Pittman, A. R., Skinner, C. D., McCartney, H. J., Jones, K., Bochner, B. R., Stevenson, R. E., & Schwartz, C. E. (2013). Decreased tryptophan metabolism in patients with autism spectrum disorders. Molecular autism, 4(1), 16. https://doi.org/10.1186/2040-2392-4-16

Zhu, C., Sawrey-Kubicek, L., Beals, E., Rhodes, C. H., Houts, H. E., Sacchi, R., & Zivkovic, A. M. (2020). Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition research (New York, N.Y.), 77, 62–72. https://doi.org/10.1016/j.nutres.2020.03.005

Ugartemendia, L., Bravo, R., Reuter, M., Castaño, M. Y., Plieger, T., Zamoscik, V., Kirsch, P., & Rodríguez, A. B. (2021). SLC6A4 polymorphisms modulate the efficacy of a tryptophan-enriched diet on age-related depression and social cognition. Clinical nutrition (Edinburgh, Scotland), 40(4), 1487–1494. https://doi.org/10.1016/j.clnu.2021.02.023

Kikuchi, A. M., Tanabe, A., & Iwahori, Y. (2021). A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning. Journal of dietary supplements, 18(3), 316–333. https://doi.org/10.1080/19390211.2020.1746725

Purton, T., Staskova, L., Lane, M. M., Dawson, S. L., West, M., Firth, J., Clarke, G., Cryan, J. F., Berk, M., O'Neil, A., Dean, O., Hadi, A., Honan, C., & Marx, W. (2021). Prebiotic and probiotic supplementation and the tryptophan-kynurenine pathway: A systematic review and meta analysis. Neuroscience and biobehavioral reviews, 123, 1–13. https://doi.org/10.1016/j.neubiorev.2020.12.026

Zamoscik, V., Schmidt, S., Bravo, R., Ugartemendia, L., Plieger, T., Rodríguez, A. B., Reuter, M., & Kirsch, P. (2021). Tryptophan-enriched diet or 5-hydroxytryptophan supplementation given in a randomized controlled trial impacts social cognition on a neural and behavioral level. Scientific reports, 11(1), 21637. https://doi.org/10.1038/s41598-021-01164-y

McDougle, C. J., Naylor, S. T., Cohen, D. J., Aghajanian, G. K., Heninger, G. R., & Price, L. H. (1996). Effects of tryptophan depletion in drug-free adults with autistic disorder. Archives of general psychiatry, 53(11), 993–1000. https://doi.org/10.1001/archpsyc.1996.01830110029004

Monda, V., Salerno, M., Sessa, F., Bernardini, R., Valenzano, A., Marsala, G., Zammit, C., Avola, R., Carotenuto, M., Messina, G., & Messina, A. (2018). Functional Changes of Orexinergic Reaction to Psychoactive Substances. Molecular neurobiology, 55(8), 6362–6368. https://doi.org/10.1007/s12035-017-0865-z

Bjørklund, G., Tinkov, A. A., Hosnedlová, B., Kizek, R., Ajsuvakova, O. P., Chirumbolo, S., Skalnaya, M. G., Peana, M., Dadar, M., El-Ansary, A., Qasem, H., Adams, J. B., Aaseth, J., & Skalny, A. V. (2020). The role of glutathione redox imbalance in autism spectrum disorder: A review. Free radical biology & medicine, 160, 149–162. https://doi.org/10.1016/j.freeradbiomed.2020.07.017

Eissa, N., Azimullah, S., Jayaprakash, P., Jayaraj, R. L., Reiner, D., Ojha, S. K., Beiram, R., Stark, H., Łażewska, D., Kieć-Kononowicz, K., & Sadek, B. (2019). The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chemico-biological interactions, 312, 108775. https://doi.org/10.1016/j.cbi.2019.108775

Venkatachalam, K., Eissa, N., Awad, M. A., Jayaprakash, P., Zhong, S., Stölting, F., Stark, H., & Sadek, B. (2021). The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism-like behavioral features in BTBR T+tf/J mice by multiple actions. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 138, 111517. https://doi.org/10.1016/j.biopha.2021.111517

Eissa, N., Venkatachalam, K., Jayaprakash, P., Falkenstein, M., Dubiel, M., Frank, A., Reiner-Link, D., Stark, H., & Sadek, B. (2021). The Multi-Targeting Ligand ST-2223 with Histamine H3 Receptor and Dopamine D2/D3 Receptor Antagonist Properties Mitigates Autism-Like Repetitive Behaviors and Brain Oxidative Stress in Mice. International journal of molecular sciences, 22(4), 1947. https://doi.org/10.3390/ijms22041947

Eissa, N., Jayaprakash, P., Stark, H., Łażewska, D., Kieć-Kononowicz, K., & Sadek, B. (2020). Simultaneous Blockade of Histamine H3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ tf/J Mouse Model of Autism. Biomolecules, 10(9), 1251. https://doi.org/10.3390/biom10091251

Frick, L., Rapanelli, M., Abbasi, E., Ohtsu, H., & Pittenger, C. (2016). Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain, behavior, and immunity, 57, 326–337. https://doi.org/10.1016/j.bbi.2016.07.002

Lim, C. K., Essa, M. M., de Paula Martins, R., Lovejoy, D. B., Bilgin, A. A., Waly, M. I., Al-Farsi, Y. M., Al-Sharbati, M., Al-Shaffae, M. A., & Guillemin, G. J. (2016). Altered kynurenine pathway metabolism in autism: Implication for immune-induced glutamatergic activity. Autism research : official journal of the International Society for Autism Research, 9(6), 621–631. https://doi.org/10.1002/aur.1565

Huang, J., Du, C., Liu, J., & Tan, G. (2020). Meta-Analysis on Intervention Effects of Physical Activities on Children and Adolescents with Autism. International journal of environmental research and public health, 17(6), 1950. https://doi.org/10.3390/ijerph17061950

Ferreira, J. P., Ghiarone, T., Júnior, C., Furtado, G. E., Carvalho, H. M., Rodrigues, A. M., & Toscano, C. (2019). Effects of Physical Exercise on the Stereotyped Behavior of Children with Autism Spectrum Disorders. Medicina (Kaunas, Lithuania), 55(10), 685. https://doi.org/10.3390/medicina55100685

Journal of Education, Health and Sport

Downloads

  • PDF

Published

2025-09-13

How to Cite

1.
PYTKA, Michalina, DALMATA, Weronika and NALEŻNA, Paulina. The neuroinflammation origin of autism spectrum disorder (ASD) – the literature review. Journal of Education, Health and Sport. Online. 13 September 2025. Vol. 84, p. 39926. [Accessed 27 December 2025]. DOI 10.12775/JEHS.2025.84.39926.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 84 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Michalina Pytka, Weronika Dalmata, Paulina Należna

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 204
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

ASD, gut microbiota, tryptophan, histaminergic pathway, kynurenine pathway
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop