Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Machine learning with different digital images classification in laparoscopic surgery
  • Home
  • /
  • Machine learning with different digital images classification in laparoscopic surgery
  1. Home /
  2. Archives /
  3. Vol. 12 No. 3 (2022) /
  4. Research Articles

Machine learning with different digital images classification in laparoscopic surgery

Authors

  • M. Bayazitov Odessa National Medical University
  • A. Liashenko Odessa National Medical University
  • D. Bayazitov Odessa National Medical University
  • T. Stoeva Odessa National Medical University
  • T. Godlevska Odessa National Medical University

DOI:

https://doi.org/10.12775/JEHS.2022.12.03.025

Keywords

machine learning, images analysis, HAAR features cascade, AdaBoost classifier, laparoscopic surgery

Abstract

The evaluation of the effectiveness of the automatic computer diagnostic (ACD) systems developed based on two classifiers – HAAR features cascade and AdaBoost for the laparoscopic diagnostics of appendicitis and ovarian cysts in women with chronic pelvic pain is presented. The training of HAAR features cascade, and AdaBoost classifiers were performed with images/ frames, which have been extracted from video gained in laparoscopic diagnostics. Both gamma-corrected RGB and RGB converted into HSV frames were used for training. Descriptors were extracted from images with the method of Local Binary Pattern (LBP), which includes both data on color characteristics («modified color LBP» - MCLBP) and textural characteristics, which have been used later on for AdaBoost classifier training. Classification of test video images revealed that the highest recall for appendicitis diagnostics was achieved after training of AdaBoost with MCLBP descriptors extracted from RGB images – 0.708, and in the case of ovarian cysts diagnostics – for MCLBP gained from RGB images – 0.886.

Developed AdaBoost-based ACD system achieved a 73.6% correct classification rate (accuracy) for appendicitis and 85.4% for ovarian cysts. The accuracy of the HAAR features classifier was highest in the case of ovarian cysts identification and achieved 0.653 (RGB) – 0.708 (HSV) values. It was concluded that the HAAR feature-based cascade classifier turned to be less effective when compared with the AdaBoost classifier trained with MCLBP descriptors. Ovarian cysts were better diagnosed when compared with appendicitis with the developed ACD.

References

Albisser, Z.: Computer-aided screening of capsule endoscopy videos. Master's Thesis, University of Oslo. (2015) .Available at: https://www.duo.uio.no/handle/10852/47642

Bay, H, Tuytelaars, T, Van Gool, L.: Surf: Speeded up robust features. Computer vision–ECCV. 3951, 404-417 (2006). doi: 10.1007/11744023_32

Bayazitov, D.N., Kresyun, N.V., Buzіnovsky, А.B., Bayazitov, N.R., Lyashenko, A.V., Godlevsky, L.S., Prybolovets, T.V., Bidnyuk, K.A.: The effectiveness of automatic laparoscopic diagnostics of liver pathology using different methods of digital images classification. Pathologiya [Ukraine]. 14, 182–187 (2017). doi: 10.14739/2310-1237. 2017.2.109219

Fatiev, D.: Faculty of Science and Technology Department of Computer Science Object tracking for improved telementoring and telestration. Master's Thesis in Telemedicine and E-health, The Arctic University of Norway. (2015). Available at: https://hdl.handle.net/10037/7764

Godlevsky L. S., Kresyun N. V., Martsenyuk V. P., Shakun K. S., Tatarchuk T. V., Prybolovets K. O., Kalinichenko L. F., Karpinski M., Gancarczyk T. Information System for Early Diabetic Retinopathy Diagnostics based on Multiscale Texture Gradient Method. World Academy of Science, Engineering and Technology International Journal of Medical and Health Sciences Vol:14, No:8, 2020, waset.org/Publication/10011395. Available at: https://repo.odmu.edu.ua:443/xmlui/handle/123456789/8296

Godlevsky L.S., Shakun K.S., Martsenyuk V.P., Tatarchuk T.V., Stoeva T.V., Godlevska T.L., Shakun I.K.,Klos- Witkowska A. (2019). Dynamic changes of the color intensity of collected urine as a basis for a distant uroflowmetry. In: Proc. The 10 th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. 18-21 September, Metz, France. Pp. 308-312. DOI: 10.1109/IDAACS.2019.8924436

Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. In: IEEE Transactions on Image Processing, pp. 1657-1663, Publisher: Institute of Electrical and Electronics Engineers (2010). doi: 10.1109/TIP.2010.2044957

Hashimoto, D.A., Rosman G., Rus, D., Meireles O.R.: Artificial Intelligence in Surgery: Promises and Perils. Ann.Surg. 268, 70-76. (2018). doi: 10.1097/SLA.0000000000002693

Lahane, A., Yesha, Y., Grasso, M., Joshi, A., Park, A., Lo, J.: Detection of unsafe action from laparoscopic cholecystectomy video. In: Proc. 2nd ACM SIGHIT International Health Informatics Symposium, pp. 315-322. Association for Computing Machinery Press, New York (2012). https://doi.org/10.1145/2110363.2110400

Ledoux, A., Losson, O., Macaire, L.: Color local binary patterns: compact descriptors for texture classification. Journal of Electronic Imaging, 25(6), 061404. (2016). doi: 10.1117/1.JEI.25.6.061404

Lyashenko, A.V., Bayazitov, N.R., Godlevsky, L.S., Bayazitov, N.R., Buzinovsky, A.B.: Informational -technical system for the automatized laparoscopic diagnostics. Radio Electronics, Computer Science, Control [Ukraine]. 4, 90-96. (2016). Available at: http://repo.odmu.edu.ua:80/xmlui/handle/123456789/5532

Madad Zadeh, S., Francois, T., Calvet, L. Chauvet, P., Canis, M., Bartoli, A., Bourdel, N.: SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology. Surg. Endosc. (2020). https://doi.org/10.1007/s00464-019-07330-8

Neofytou, M.S., Tanos, V., Constantinou, I., Kyriacou, E.C., Pattichis M.S., Pattichis, C.S.: Computer-aided diagnosis in hysteroscopic imaging. IEEE J. Biomed. Health. Inform. 19(3), 1129-1136. (2015). doi: 10.1109/JBHI.2014.2332760

Petscharnig, S., Schöffmann, K.: Learning laparoscopic video shot classification for gynecological surgery. Multimed. Tools Appl. 77, 8061–8079. (2018). doi: 10.1007/s11042-017-4699-5

Shu, Y., Bilodeau, G.A., Cheriet F.: Segmentation of laparoscopic images: Integrating graph-based segmentation and multistage region merging. In: Proc. 2nd Canadian Conference on Computer and Robot Vision (CRV’05) (2005). doi: 10.1109/ CRV. 2005.74

Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 511-518. (2001). doi: 10.1109/CVPR.2001.990517

Zhou, M, Bao, G, Geng, Y, Alkandari, B, Li, X.: Polyp detection and radius measurement in small intestine using video capsule endoscopy. In: Biomedical Engineering and Informatics (BMEI), 2014 7th International Conference on, IEEE, pp. 237-241. (2014). doi: 10.1109/BMEI.2014.7002777

Downloads

  • PDF

Published

2022-03-31

How to Cite

1.
BAYAZITOV, M., LIASHENKO, A., BAYAZITOV, D., STOEVA, T. & GODLEVSKA, T. Machine learning with different digital images classification in laparoscopic surgery. Journal of Education, Health and Sport [online]. 31 March 2022, T. 12, nr 3, s. 295–304. [accessed 25.3.2023]. DOI 10.12775/JEHS.2022.12.03.025.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 12 No. 3 (2022)

Section

Research Articles

License

Copyright (c) 2022 M. Bayazitov, A. Liashenko, D. Bayazitov, T. Stoeva, T. Godlevska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 64
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

machine learning, images analysis, HAAR features cascade, AdaBoost classifier, laparoscopic surgery
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop