Gut Microbiome as a Novel Treatment Strategy for Psoriasis
DOI:
https://doi.org/10.12775/JEHS.2022.12.09.046Keywords
psoriasis, microbiome, gut, dysbiosis, probioticsAbstract
Introduction and purpose: Psoriasis is a skin disease that develops following chronic inflammatory signaling and keratinocyte hyperproliferation. The pathogenesis of psoriasis is compound and not yet fully understood. Several studies concerning gut microbiota composition and its role in disease pathogenesis recently demonstrated significant alterations among psoriatic patients. This study aims to highlight the latest scientific evidence regarding the gut microbiome alterations of psoriatic patients, as well as the state of knowledge in terms of microbiome-targeted therapies as promising preventive and therapeutic tools for psoriasis.
Brief description of the state of knowledge: The current state of knowledge indicates that the main causes of psoriasis may be a genetic predisposition, as well as many immunological and environmental factors, including dysbiosis of the intestinal microflora. The article covers clinical and experimental studies which indicate that gut microbiota dysbiosis concerning diversity as well as the composition of the microbiome is the potential causal factor of psoriasis and the gut microbiota may serve as a promising prevention/therapy target for psoriasis patients.
Conclusions: This review highlighted a strong link between psoriasis and the gut microbiota, to add new knowledge for discovering the relationship between the altered intestinal microbiota in psoriasis patients. Despite all of these interesting findings, there are a lot of limitations and challenges that future studies should face. More precise and greater studies need to be done to fully understand the potential of microbiota-aimed therapies.
References
Greb, J.E.; Goldminz, A.M.; Elder, J.T.; Lebwohl, M.G.; Gladman, D.D.; Wu, J.J.; Mehta, N.N.; Finlay, A.Y.; Gottlieb, A.B. Psoriasis. Nat. Rev. Dis. Primers 2016, 2, 16082. https://doi.org/10.1038/nrdp.2016.82
Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. https://doi.org/10.1001/jama.2020.4006
Obradors, M.; Blanch, C.; Comellas, M.; Figueras, M.; Lizan, L. Health-Related Quality of Life in Patients with Psoriasis: A Systematic Review of the European Literature. Qual. Life Res. 2016, 25, 2739–2754. https://doi.org/10.1007/s11136-016-1321-7
Takeshita, J.; Grewal, S.; Langan, S.M.; Mehta, N.N.; Ogdie, A.; Van Voorhees, A.S.; Gelfand, J.M. Psoriasis and Comorbid Diseases: Implications for Management. J. Am. Acad. Dermatol. 2017, 76, 393–403. https://doi.org/10.1016/j.jaad.2016.07.065
AlQassimi, S.; AlBrashdi, S.; Galadari, H.; Hashim, M.J. Global Burden of Psoriasis-Comparison of Regional and Global Epidemiology, 1990 to 2017. Int. J. Dermatol. 2020, 59, 566–571. https://doi.org/10.1111/ijd.14864
Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M. National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ 2020, 369, m1590. https://doi.org/10.1136/bmj.m1590
Michalek, I.M.; Loring, B.; John, S.M. A Systematic Review of Worldwide Epidemiology of Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 205–212. https://doi.org/10.1111/jdv.13854
Raychaudhuri, S.K.; Maverakis, E.; Raychaudhuri, S.P. Diagnosis, and Classification of Psoriasis. Autoimmun. Rev. 2014, 13, 490–495. https://doi.org/10.1016/j.autrev.2014.01.008
Ogawa, E.; Okuyama, R.; Seki, T.; Kobayashi, A.; Oiso, N.; Muto, M.; Nakagawa, H.; Kawada, A. Epidemiological Survey of Patients with Psoriasis in Matsumoto City, Nagano Prefecture, Japan. J. Dermatol. 2018, 45, 314–317. https://doi.org/10.1111/1346-8138.14101
Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. https://doi.org/10.3390/ijms20061475
Wang, J.; Li, W.; Wang, C.; Wang, L.; He, T.; Hu, H.; Song, J.; Cui, C.; Qiao, J.; Qing, L.; et al. Enterotype Bacteroides Is Associated with a High Risk in Patients with Diabetes: A Pilot Study. J. Diabetes Res. 2020, 2020, 1–11. https://doi.org/10.1155/2020/6047145
De Moraes, A.; Fernandes, G.D.R.; da Silva, I.T.; Petitto, B.D.A.; Gomes, E.P.; Pereira, A.D.C.; Ferreira, S.R.G. Enterotype May Drive the Dietary-Associated Cardiometabolic Risk Factors. Front. Cell. Infect. Microbiol. 2017, 7, 47. https://doi.org/10.3389/fcimb.2017.00047
Mobeen, F.; Sharma, V.; Prakash, T. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation 2018, 14, 560–573. https://doi.org/10.6026/97320630014560
Kahleova, H.; Rembert, E.; Alwarith, J.; Yonas, W.N.; Tura, A.; Holubkov, R.; Agnello, M.; Chutkan, R.; Barnard, N.D. Effects of a Low-Fat Vegan Diet on Gut Microbiota in Overweight Individuals and Relationships with Body Weight, Body Composition, and Insulin Sensitivity. A Randomized Clinical Trial. Nutrients 2020, 12, 2917. https://doi.org/10.3390/nu12102917
Tonon, K.M.; Morais, T.B.; Taddei, C.R.; Araújo-Filho, H.B.; Abrão, A.C.F.V.; Miranda, A.; de Morais, M.B. Gut Microbiota Comparison of Vaginally and Cesarean Born Infants Exclusively Breastfed by Mothers Secreting α1–2 Fucosylated Oligosaccharides in Breast Milk. PLoS ONE 2021, 16, e0246839. https://doi.org/10.1371/journal.pone.0246839
Liou, J.-M.; Chen, C.-C.; Chang, C.-M.; Fang, Y.-J.; Bair, M.-J.; Chen, P.-Y.; Chang, C.-Y.; Hsu, Y.-C.; Chen, M.-J.; Chen, C.-C.; et al. Long-Term Changes of Gut Microbiota, Antibiotic Resistance, and Metabolic Parameters after Helicobacter Pylori Eradication: A Multicentre, Open-Label, Randomised Trial. Lancet Infect. Dis. 2019, 19, 1109–1120. https://doi.org/10.1016/S1473-3099(19)30272-5
Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; van Treuren, W.; Han, S.; et al. Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137–4153.e14. https://doi.org/10.1016/j.cell.2021.06.019
Bojovi´c, K.; Ignjatovi´c, Ð.I.; Baji´c, S.S.; Milutinovi´c, D.V.; Tomi´c, M.; Goli´c, N.; Tolinaˇcki, M. Gut Microbiota Dysbiosis Associated with Altered Production of Short Chain Fatty Acids in Children With Neurodevelopmental Disorders. Front. Cell. Infect. Microbiol. 2020, 10, 223.
Eslick, S.; Williams, E.J.; Berthon, B.S.; Wright, T.; Karihaloo, C.; Gately, M.; Wood, L.G. Weight Loss and Short-Chain Fatty Acids Reduce Systemic Inflammation in Monocytes and Adipose Tissue Macrophages from Obese Subjects. Nutrients 2022, 14, 765. https://doi.org/10.3390/nu14040765
Rorato, R.; de Borges, B.C.; Uchoa, E.T.; Antunes-Rodrigues, J.; Elias, C.F.; Kagohara Elias, L.L. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes. Int. J. Mol. Sci. 2017, 18, 1431. https://doi.org/10.3390/ijms18071431
López-Moreno, J.; García-Carpintero, S.; Jimenez-Lucena, R.; Haro, C.; Rangel-Zúñiga, O.A.; Blanco-Rojo, R.; Yubero-Serrano, E.M.; Tinahones, F.J.; Delgado-Lista, J.; Pérez-Martínez, P.; et al. Effect of Dietary Lipids on Endotoxemia Influences Postprandial Inflammatory Response. J. Agric. Food Chem. 2017, 65, 7756–7763.
Buhaș, Mihaela Cristina et al. “Gut Microbiota in Psoriasis.” Nutrients vol. 14,14 2970. 20 Jul. 2022, doi:10.3390/nu14142970
Yeh, N.; Hsu, C.; Tsai, T.; Chiu, H. Gut Microbiome in Psoriasis is Perturbed Differently During Secukinumab and Ustekinumab Therapy and Associated with Response to Treatment. Clin. Drug Investig. 2019, 39, 1195–1203. https://doi.org/10.1007/s40261-019-00849-7
Codoñer, F.; Ramirez-Bosca, A.; Climent, E.; Carrion-Gutierrez, M.; Guerrero, M.; Perez-Orquin, J.; de la Parte, J.; Genoves, S.; Ramon, D.; Navarro-Lopez, V.; et al. Gut microbial composition in patients with psoriasis. Sci. Rep. 2018, 8, 3812.] https://doi.org/10.1038/s41598-018-22125-y
. Scher, J.; Ubeda, C.; Artacho, A.; Attur, M.; Isaac, S.; Reddy, S.; Marmon, S.; Neimann, A.; Brusca, S.; Patel, T.; et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015, 67, 128–139. https://doi.org/10.1002/art.38892
Chen, Y.; Ho, H.; Tseng, C.; Lai, Z.; Shieh, J.; Wu, C. Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Exp. Dermatol. 2018, 27, 1336–1343. https://doi.org/10.1111/exd.13786
Huang, L.; Gao, R.; Yu, N.; Zhu, Y.; Ding, Y.; Qin, H. Dysbiosis of gut microbiota was closely associated with psoriasis. Sci. China Life Sci. 2019, 62, 807–815. https://doi.org/10.1007/s11427-018-9376-6
Eppinga, H.; Sperna Weiland, C.; Thio, H.; van der Woude, C.; Nijsten, T.; Peppelenbosch, M.; Konstantinov, S. Similar Depletion of Protective Faecalibacterium prausnitzii in Psoriasis and Inflammatory Bowel Disease, but not in Hidradenitis Suppurativa. J. Crohns Colitis 2016, 10, 1067–1075. https://doi.org/10.1093/ecco-jcc/jjw070
Lin CY, Hsu CY, He HR, et al. Gut microbiota differences between psoriatic arthritis and other undifferentiated arthritis: A pilot study. Medicine (Baltimore). 2022;101(28):e29870. Published 2022 Jul 15. https://doi.org/10.1097/MD.0000000000029870
Tan, L.; Zhao, S.; Zhu, W.; Wu, L.; Li, J.; Shen, M.; Lei, L.; Chen, X.; Pen, C. The Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp. Dermatol. 2018, 27, 144–149. https://doi.org/10.1111/exd.13463
Dei-Cas, I.; Giliberto, F.; Luce, L.; Dopazo, H.; Penas-Steinhardt, A. Metagenomic analysis of gut microbiota in non-treated plaque psoriasis patients stratified by disease severity: Development of a new Psoriasis-Microbiome Index. Sci. Rep. 2020, 10, 12754. https://doi.org/10.1038/s41598-020-69537-3
Hidalgo-Cantabrana, C.; Gomez, J.; Delgado, S.; Requena-Lopez, S.; Queiro-Silva, R.; Margolles, A.; Coto, E.; Sanchez, B.; Coto-Segura, P. Gut microbiota dysbiosis in a cohort of patients with psoriasis. Br. J. Dermatol. 2019, 181, 1287–1295. https://doi.org/10.1111/bjd.17931
Shapiro, J.; Cohen, N.; Shalev, V.; Uzan, A.; Koren, O.; Maharshak, N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J. Dermatol. 2019, 46, 595–603. https://doi.org/10.1111/1346-8138.14933
Zhang, Xinyue et al. “Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients.” BMC microbiology vol. 21,1 78. 8 Mar. 2021
Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. https://doi.org/10.1186/s12967-017-1175-y
Schade, L et al. “The gut microbiota profile in psoriasis: a Brazilian case-control study.” Letters in applied microbiology vol. 74,4 (2022): 498-504. https://doi.org/10.1111/lam.13630
Wu, C.-Y.; Chang, Y.-T.; Juan, C.-K.; Shieh, J.-J.; Lin, Y.-P.; Liu, H.-N.; Lin, J.-T.; Chen, Y.-J. Risk of Inflammatory Bowel Disease in Patients with Rosacea: Results from a Nationwide Cohort Study in Taiwan. J. Am. Acad. Dermatol. 2017, 76, 911–917. https://doi.org/10.1016/j.jaad.2016.11.065
• 38. Masallat, D.; Moemen, D.; State, A. Gut bacterial microbiota in psoriasis: A case control study. Afr. J. Microbiol. Res. 2016, 10, 1337–1343. https://doi.org/10.5897/AJMR2016.8046
Esquivel-Elizondo, S.; Ilhan, Z.E.; Garcia-Peña, E.I.; Krajmalnik-Brown, R. Insights into Butyrate Production in a Controlled Fermentation System via Gene Predictions. mSystems 2017, 2, e00051-17. https://doi.org/10.1128/mSystems.00051-17
Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19, 29–41. https://doi.org/10.1111/1462-2920.13589
Gao, J.; Guo, X.; Wei, W.; Li, R.; Hu, K.; Liu, X.; Jiang, W.; Liu, S.; Wang, W.; Sun, H.; et al. The Association of Fried Meat Consumption With the Gut Microbiota and Fecal Metabolites and Its Impact on Glucose Homoeostasis, Intestinal Endotoxin Levels, and Systemic Inflammation: A Randomized Controlled-Feeding Trial. Diabetes Care 2021, 44, 1970–1979. https://doi.org/10.2337/dc21-0099
Todberg, T.; Egeberg, A.; Zachariae, C.; Sørensen, N.; Pedersen, O.; Skov, L. Patients with Psoriasis Have a Dysbiotic Taxonomic and Functional Gut Microbiota*. Br. J. Dermatol. 2022, 187, 89–98. https://doi.org/10.1111/bjd.21245
. Fostering Healthier and More Sustainable Diets—Learning from the Mediterranean and New Nordic Experience. Available online: https://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/news/news/2018/5/fosteringhealthier-and-more-sustainable-diets-learning-from-the-mediterranean-and-new-nordic-experience (accessed on 10 May 2022).
Chicco, F.; Magrì, S.; Cingolani, A.; Paduano, D.; Pesenti, M.; Zara, F.; Tumbarello, F.; Urru, E.; Melis, A.; Casula, L.; et al. Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflamm. Bowel Dis. 2020, 27, 1–9. https://doi.org/10.1093/ibd/izaa097
Barrea, L.; Fabbrocini, G.; Annunziata, G.; Muscogiuri, G.; Donnarumma, M.; Marasca, C.; Colao, A.; Savastano, S. Role of Nutrition and Adherence to the Mediterranean Diet in the Multidisciplinary Approach of Hidradenitis Suppurativa: Evaluation of Nutritional Status and Its Association with Severity of Disease. Nutrients 2018, 11, 57. https://doi.org/10.3390/nu11010057
Barrea, L.; Donnarumma, M.; Cacciapuoti, S.; Muscogiuri, G.; de Gregorio, L.; Blasio, C.; Savastano, S.; Colao, A.; Fabbrocini, G. Phase Angle and Mediterranean Diet in Patients with Acne: Two Easy Tools for Assessing the Clinical Severity of Disease. J. Transl. Med. 2021, 19, 1–15. https://doi.org/10.1186/s12967-021-02826-1
Barrea, L.; Balato, N.; di Somma, C.; Macchia, P.E.; Napolitano, M.; Savanelli, M.C.; Esposito, K.; Colao, A.; Savastano, S. Nutrition and Psoriasis: Is There Any Association between the Severity of the Disease and Adherence to the Mediterranean Diet? J. Transl. Med. 2015, 13, 18. https://doi.org/10.1186/s12967-014-0372-1
Phan, C.; Touvier, M.; Kesse-Guyot, E.; Adjibade, M.; Hercberg, S.; Wolkenstein, P.; Chosidow, O.; Ezzedine, K.; Sbidian, E. Association Between Mediterranean Anti-Inflammatory Dietary Profile and Severity of Psoriasis. JAMA Dermatol. 2018, 154, 1017–1024. https://doi.org/10.1001/jamadermatol.2018.2127
Guida, B.; Napoleone, A.; Trio, R.; Nastasi, A.; Balato, N.; Laccetti, R.; Cataldi, M. Energy-Restricted, n-3 Polyunsaturated Fatty Acids-Rich Diet Improves the Clinical Response to Immuno-Modulating Drugs in Obese Patients with Plaque-Type Psoriasis: A Randomized Control Clinical Trial. Clin. Nutr. 2014, 33, 399–405. https://doi.org/10.1016/j.clnu.2013.09.010
Wang, T.; Sha, L.; Li, Y.; Zhu, L.; Wang, Z.; Li, K.; Lu, H.; Bao, T.; Guo, L.; Zhang, X.; et al. Dietary α-Linolenic Acid-Rich Flaxseed Oil Exerts Beneficial Effects on Polycystic Ovary Syndrome Through Sex Steroid Hormones—Microbiota—Inflammation Axis in Rats. Front. Endocrinol. 2020, 11, 284. https://doi.org/10.3389/fendo.2020.00284
Tveit, K.; Brokstad, K.; Berge, R.; Sæbø, P.; Hallaråker, H.; Brekke, S.; Meland, N.; Bjørndal, B. A Randomized, Double-Blind, Placebo-Controlled Clinical Study to Investigate the Efficacy of Herring Roe Oil for Treatment of Psoriasis. Acta Derm. Venereol. 2020, 100, adv00154. https://doi.org/10.2340/00015555-3507
Vijay, A.; Astbury, S.; Le Roy, C.; Spector, T.D.; Valdes, A.M. The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes 2020, 13, 1–11. https://doi.org/10.1080/19490976.2020.1863133
Nakkarach, A.; Foo, H.L.; Song, A.A.-L.; Mutalib, N.E.A.; Nitisinprasert, S.; Withayagiat, U. Anti-Cancer and Anti-Inflammatory Effects Elicited by Short Chain Fatty Acids Produced by Escherichia Coli Isolated from Healthy Human Gut Microbiota. Microb. Cell Factories 2021, 20, 1–17. https://doi.org/10.1186/s12934-020-01477-z
Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediat. Inflamm. 2021, 2021, 1–11. https://doi.org/10.1155/2021/8879227
. Adkins, Y.; Kelley, D.S. Mechanisms Underlying the Cardioprotective Effects of Omega-3 Polyunsaturated Fatty Acids. J. Nutr. Biochem. 2010, 21, 781–792. https://doi.org/10.1016/j.jnutbio.2009.12.004
Huang, R.-Y.; Yu, Y.-L.; Cheng, W.-C.; OuYang, C.-N.; Fu, E.; Chu, C.-L. Immunosuppressive Effect of Quercetin on Dendritic Cell Activation and Function. J. Immunol. 2010, 184, 6815–6821. https://doi.org/10.4049/jimmunol.0903991
Chirumbolo, S. The Role of Quercetin, Flavonols and Flavones in Modulating Inflammatory Cell Function. Inflamm. Allergy Drug Targets 2010, 9, 263–285. https://doi.org/10.2174/187152810793358741
Endale, M.; Park, S.-C.; Kim, S.; Kim, S.-H.; Yang, Y.; Cho, J.Y.; Rhee, M.H. Quercetin Disrupts Tyrosine-Phosphorylated Phosphatidylinositol 3-Kinase and Myeloid Differentiation Factor-88 Association and Inhibits MAPK/AP-1 and IKK/NF-KBInduced Inflammatory Mediators Production in RAW 264.7 Cells. Immunobiology 2013, 218, 1452–1467. https://doi.org/10.1016/j.imbio.2013.04.019
Zhao, L.; Zhang, Q.; Ma, W.; Tian, F.; Shen, H.; Zhou, M. A Combination of Quercetin and Resveratrol Reduces Obesity in High-Fat Diet-Fed Rats by Modulation of Gut Microbiota. Food Funct. 2017, 8, 4644–4656. https://doi.org/10.1039/c7fo01383c
Wang, P.; Gao, J.; Ke, W.; Wang, J.; Li, D.; Liu, R.; Jia, Y.; Wang, X.; Chen, X.; Chen, F.; et al. Resveratrol Reduces Obesity in High-Fat Diet-Fed Mice via Modulating the Composition and Metabolic Function of the Gut Microbiota. Free Radic. Biol. Med. 2020, 156, 83–98. https://doi.org/10.1016/j.freeradbiomed.2020.04.013
Cai, T.-T.; Ye, X.-L.; Li, R.-R.; Chen, H.; Wang, Y.-Y.; Yong, H.-J.; Pan, M.-L.; Lu, W.; Tang, Y.; Miao, H.; et al. Resveratrol Modulates the Gut Microbiota and Inflammation to Protect Against Diabetic Nephropathy in Mice. Front. Pharmacol. 2020, 11, 1249. https://doi.org/10.3389/fphar.2020.01249
Zhao, L.; Zhu, X.; Xia, M.; Li, J.; Guo, A.-Y.; Zhu, Y.; Yang, X. Quercetin Ameliorates Gut Microbiota Dysbiosis That Drives Hypothalamic Damage and Hepatic Lipogenesis in Monosodium Glutamate-Induced Abdominal Obesity. Front. Nutr. 2021, 8, 671353. https://doi.org/10.3389/fnut.2021.671353
Shen, L.; Liu, L.; Ji, H.-F. Regulative Effects of Curcumin Spice Administration on Gut Microbiota and Its Pharmacological Implications. Food Nutr. Res. 2017, 61, 1361780. https://doi.org/10.1080/16546628.2017.1361780
. Peterson, C.T.; Vaughn, A.R.; Sharma, V.; Chopra, D.; Mills, P.J.; Peterson, S.N.; Sivamani, R.K. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J. Evid. Based Integr. Med. 2018, 23, 2515690X18790725. https://doi.org/10.1177/2515690X18790725
Ohno, M.; Nishida, A.; Sugitani, Y.; Nishino, K.; Inatomi, O.; Sugimoto, M.; Kawahara, M.; Andoh, A. Nanoparticle Curcumin Ameliorates Experimental Colitis via Modulation of Gut Microbiota and Induction of Regulatory T Cells. PLoS ONE 2017, 12, e0185999. https://doi.org/10.1371/journal.pone.0185999
Antiga, E.; Bonciolini, V.; Volpi, W.; Del Bianco, E.; Caproni, M. Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris. BioMed Res. Int. 2015, 2015, 1–7 https://doi.org/10.1155/2015/283634
Schlundt, Jorgen. "Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria" (PDF). Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. FAO / WHO.
Probiotics: What You Need To Know|NCCIH. Available online: https://www.nccih.nih.gov/health/probiotics-what-you-needto-know (accessed on 9 April 2022)
Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. https://doi.org/10.3390/foods8030092
Synbiotics—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/immunology-andmicrobiology/synbiotics (accessed on 9 April 2022). https://doi.org/10.1016/B978-0-323-85170-1.00018-X
Zhao, Y.; Zeng, Y.; Zeng, D.; Wang, H.; Zhou, M.; Sun, N.; Xin, J.; Khaique, A.; Rajput, D.; Pan, K. Probiotics and MicroRNA: Their Roles in the Host-Microbe Interactions. Front. Microbiol. 2021, 11, 604462. https://doi.org/10.3389/fmicb.2020.604462
Lu, W.; Deng, Y.; Fang, Z.; Zhai, Q.; Cui, S.; Zhao, J.; Chen, W.; Zhang, H. Potential Role of Probiotics in Ameliorating Psoriasis by Modulating Gut Microbiota in Imiquimod-Induced Psoriasis-Like Mice. Nutrients 2021, 13, 2010. https://doi.org/10.3390/nu13062010
Groeger, D.; Mahony, L.; Murphy, E.; Bourke, J.; Dinan, T.; Kiely, B.; Shanahan, F.; Quigley, E. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013, 4, 325–339.
Navarro-López, V.; Martínez-Andrés, A.; Ramírez-Boscá, A.; Ruzafa-Costas, B.; Núñez-Delegido, E.; Carrión-Gutiérrez, M.; Prieto-Merino, D.; Codoner-Cortes, F.; Ramon-Vidal, D.; Genoves-Martinez, S.; et al. Efficacy and Safety of Oral Administration of a Mixture of Probiotic Strains in Patients with Psoriasis: A Randomized Controlled Clinical Trial. Acta Derm. Venereol. 2019, 99, 1078–1084. https://doi.org/10.2340/00015555-3305
Svendsen, M.; Andersen, F.; Andersen, K.; Pottegård, A.; Johannessen, H.; Möller, S.; August, B.; Feldman, S.; Andersen, K. A smartphone application supporting patients with psoriasis improves adherence to topical treatment: A randomized controlled trial. Br. J. Dermatol. 2018, 179, 1062–1071. https://doi.org/10.1111/bjd.16667
Lin, C.; Zeng, T.; Deng, Y.; Yang, W.; Xiong, J. Treatment of Psoriasis Vulgaris Using Bacteroides Fragilis BF839: A Single-Arm, Open Preliminary Clinical Study. Sheng Wu Gong Cheng Xue Bao 2021, 37, 3828–3835. https://doi.org/10.13345/j.cjb.210198
Xu, H.; Huang HZhou, Y.; Zhao, H.; Xu, J.; Shou, D.; Liu, Y.; Zhou, Y.; Nie, Y. Fecal Microbiota Transplantation: A New Therapeutic Attempt from the Gut to the Brain. Gastroenterol. Res. Pract. 2021, 20, 6699268. https://doi.org/10.1155/2021/6699268
Paramsothy, S.; Nielsen, S.; Kamm, M.A.; Deshpande, N.P.; Faith, J.J.; Clemente, J.C.; Paramsothy, R.; Walsh, A.J.; van den Bogaerde, J.; Samuel, D.; et al. Specific Bacteria and Metabolites Associated with Response to Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Gastroenterology 2019, 156, 1440–1454.e2. https://doi.org/10.1053/j.gastro.2018.12.001
Yin, G.; Li, J.F.; Sun, Y.F.; Ding, X.; Zeng, J.Q.; Zhang, T.; Peng, L.H.; Yang, Y.S.; Zhao, H. Fecal Microbiota Transplantation as a Novel Therapy for Severe Psoriasis. Zhonghua Nei Ke Za Zhi 2019, 58, 782–785. https://doi.org/10.3760/cma.j.issn.0578-1426.2019.10.011
Chen, H. L., Zeng, Y. B., Zhang, Z. Y., Kong, C. Y., Zhang, S. L., Li, Z. M., Huang, J. T., Xu, Y. Y., Mao, Y. Q., Cai, P. R., Han, B., Wang, W. Q., & Wang, L. S. (2021). Gut and Cutaneous Microbiome Featuring Abundance of Lactobacillus reuteri Protected Against Psoriasis-Like Inflammation in Mice. Journal of inflammation research, 14, 6175–6190.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marlena Zając, Monika Borowiecka, Dariusz Gruca, Dagmara Buksak, Wiktor Wróblewski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 784
Number of citations: 0