The role of the skin microbiome in the development of alopecia areata
DOI:
https://doi.org/10.12775/JEHS.2022.12.11.030Keywords
microbiome, alopecia, alopecia areata, skinAbstract
Human skin is a habitat to a variety of microbes that, along with their host genetic material, make up microbiome of the human skin. The composition of the microbiota in the gut and skin is influenced by many factors, such as life stage, nutrition, lifestyle and gender. Recently, there is more and more discussions about the increasing role of the microbiome in the development of other diseases. According to many studies, any changes in the skin microbiota are associated with the development of several dermatoses. Better understanding of the human microbiome and its interactions with the immune system could help us understand many diseases as well as could have an impact on the development of some new therapeutic methods. In this article, the current knowledge on the skin microbiome and its influence on the development of alopecia areata will be discussed. Alopecia areata (AA) is caused by an autoimmune process that destroys the hair follicles. The exact pathogenesis is unknown, but the triggering factors include: immune disorders, environmental exposures, genetic predisposition, and possibly the microbiome.References
Gallo R. L. (2017). Human Skin Is the Largest Epithelial Surface for Interaction With Microbes. J. Investig. Dermatol. 137 (6
Lunjani N., Hlela C., O’Mahony L. (2019). Microbiome and Skin Biology. Curr. Opin. Allergy Clin. Immunol. 19 (4), 328–333. doi: 10.1097/ACI.0000000000000542
Byrd A. L., Belkaid Y., Segre J. A. (2018). The Human Skin Microbiome. Nat. Rev. Microbiol.16 (3), 143–155. doi: 10.1038/nrmicro.2017.157
McLoughlin I. J., Wright E. M., Tagg J. R., Jain R., Hale J. D. F. (2021). Skin Microbiome – The Next Frontier for Probiotic Intervention. Probiotics Antimicrob. Proteins. doi: 10.1007/s12602-021-09824.1
Grice E. A., Segre J. A. (2011). The Skin Microbiome. Nat. Rev. Microbiol. 9, 244–253. doi: 10.1038/nrmicro253
Rozas M., de Ruijter A. H., Fabrega M. J., Zorgani A., Guell M., Paetzold B., et al.. (2021). From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium Acnes to Skin Homeostasis. Microorganisms 9 (3), 628. doi: 10.3390/microorganisms9030628
Boxberger M., Cenizo V., Cassir N., La Scola B. (2021). Challenges in Exploring and Manipulating the Human Skin Microbiome. Microbiome. 9, 125. doi: 10.1186/s40168-021-01062-6
Forton F. M. N., De Maertelaer V. (2021). Which Factors Influence Demodex Proliferation? A Retrospective Pilot Study Highlighting a Possible Role of Subtle Immune Variations and Sebaceous Gland Status. J. Dermatol. 48 (8), 1210–1220. doi: 10.1111/1346-8138.15910
Langan S. M., Irvine A. D., Weidinger S. (2020). Atopic Dermatitis. Lancet 396 (10247), 345–360. doi: 10.1016/S0140-6736(20)31286-1
Chu D. M., Ma J., Prince A. L., Antony K. M., Seferovic M. D., Aagaard K. M. (2017). Maturation of the Infant Microbiome Community Structure and Function Across Multiple Body Sites and in Relation to Mode of Delivery. Nat. Med. 23, 314–326. doi: 10.1038/nm.4272
Giacomoni P. U., Mammone T., Teri M. (2009). Gender–Linked Differences in Human Skin. J. Dermatol. Sci. 55 (3), 144–149. doi: 10.1016/j.jdermsci.2009.06.001
Ursell L. K., Clemente J. C., Rideout J. R., Gevers D., Caporaso J. G., Knight R. (2012). The Interpersonal and Intrapersonal Diversity of Human–Associated Microbiota in Key Body Sites. J. Allergy Clin. Immunol. 129 (5), 1204–1208. doi: 10.1016/j.jaci.2012.03.010
Sanford J. A., Gallo R. L. (2013). Functions of the Skin Microbiota in Health and Disease. Semin. Immunol. 25 (5), 370–377. doi: 10.1016/j.smim.2013.09.005
Dréno B., Araviiskaia E., Berardesca E., Gontijo G., Sanchez Viera M., Xiang L. F., et al.. (2016). Microbiome in Healthy Skin, Update for Dermatologists. J. Eur. Acad. Dermatol. Venereol. 30 (12), 2038–2047. doi: 10.1111/jdv.13965
Yu Y., Dunaway S., Champer J., Kim J., Alikhan A. (2020. a). Changing Our Microbiome: Probiotics in Dermatology. Br J. Dermatol. 182(1), 39–46. doi: 10.1111/bjd.18659
Messenger AG, McKillop J, Farrant P, McDonagh AJ, Sladden M. British Association of Dermatologists' guidelines for the management of alopecia areata 2012. Br J Dermatol. 2012 May;166(5):916-26.
Pratt CH, King LE, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata. Nat Rev Dis Primers. 2017 Mar 16;3:17011.
Strazzulla L. C., Wang E. H. C., Avila L., Lo Sicco K., Brinster N., Christiano A. M., et al.. (2018). Alopecia Areata: Disease Characteristics, Clinical Evaluation, and New Perspectives on Pathogenesis. J. Am. Acad. Dermatol. 78 (1), 1–12. doi: 10.1016/j.jaad.2017.04.1141
Anzai A., Wang E. H. C., Lee E. Y., Aoki V., Christiano A. M. (2019). Pathomechanisms of Immune–Mediated Alopecia. Int. Immunol. 31(7), 439–447. doi: 10.1093/intimm/dxz039
Rebello D., Wang E., Yen E., Lio P. A., Kelly C. R. (2017). Hair Growth in Two Alopecia Patients After Fecal Microbiota Transplant. ACG Case Rep. J. 4, e107. doi: 10.14309/crj.2017.107
Migacz–Gruszka K., Branicki W., Obtulowics A., Pirowska M., Gruszka K., Wojas–Pelc A. (2019). What's New in the Pathophysiology of Alopecia Areata? The Possible Contribution of Skin and Gut Microbiome in the Pathogenesis of Alopecia – Big Opportunities, Big Challenges, and Novel Perspectives. Int. J. Trichology 11 (5), 185–188. doi: 10.4103/ijt.ijt_76_19
Simakou T., Butcher J. P., Reid S., Henriquez F. L. (2019). Alopecia Areata: A Multifactorial Autoimmune Condition. J. Autoimmun. 98, 74–85. doi: 10.1016/j.jaut.2018.12.001
Juhasz M., Chen S., Khosrovi–Eghbal A., Ekelem C., Landaverde Y., Baldi P., et al.. (2020). Characterizing the Skin and Gut Microbiome of Alopecia Areata Patients. SKIN J. Cutan Med. 4(1), 23–30. doi: 10.25251/skin.4.1.4
Mirzoyev SA, Schrum AG, Davis MDP, Torgerson RR. Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990-2009. J Invest Dermatol. 2014 Apr;134(4):1141-1142.
Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012 Apr 19;366(16):1515-25.
Safavi KH, Muller SA, Suman VJ, Moshell AN, Melton LJ. Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin Proc. 1995 Jul;70(7):628-33.
Colucci R., Moretti S. (2021). Implication of Human Bacterial Gut Microbiota on Immune–Mediated and Autoimmune Dermatological Diseases and Their Comorbidities: A Narrative Review. Dermatol. Ther. (Heidelb.) 11 (2), 363–384. doi: 10.1007/s13555-021-00485-0
Pinto D., Sorbellini E., Marzani B., Rucco M., Giuliani G., Rinaldi F. (2019). Scalp Bacterial Shift in Alopecia Areata. PloS One 14 (4), e0215206. doi: 10.1371/journal.pone.0215206
Offidani A., Amerio P., Bernardini M. L., Feliciani C., Bossi G. (2000). Role of Cytomegalovirus Replication in Alopecia Areata Pathogenesis. J. Cutan Med. Surg. 4 (2), 63–65. doi: 10.1177/120347540000400204
Rudnicka L., Lukomska M. (2012). Alternaria Scalp Infection in a Patient With Alopecia Areata. Coexistence or Causative Relationship? J. Dermatol. Case Rep. 6 (4), 120–124. doi: doi: 10.3315/jdcr.2012.1120
Polak–Witka K., Rudnicka L., Blume–Peytavi U., Vogt A. (2020). The Role of the Microbiome in Scalp Hair Follicle Biology and Disease. Exp. Dermatol. 29 (3), 286–294. doi: 10.1111/exd.13935
De Pessemier B., Grine L., Debaere M., Maes A., Paetzold B., Callewaert C. (2021). Gut–Skin Axis: Current Knowledge of the Interrelationship Between Microbial Dysbiosis and Skin Conditions. Microorganisms 9 (2), 353. doi: 10.3390/microorganisms9020353
Rebello D., Wang E., Yen E., Lio P. A., Kelly C. R. (2017). Hair Growth in Two Alopecia Patients After Fecal Microbiota Transplant. ACG Case Rep. J. 4, e107. doi: 10.14309/crj.2017.107
Moreno–Arrones O. M., Serrano–Villar S., Perez–Brocal V., Saceda-Corralo D. (2020). Analysis of the Gut Microbiota in Alopecia Areata: Identification of Bacterial Biomarkers. J. Eur. Acad. Dermatol. Venereol. 34 (2), 400–405. doi: 10.1111/jdv.15885
Xie W. R., Yang X. Y., Xia H. H. X., Wu L. H., He X. X. (2019). Hair Regrowth Following Fecal Microbiota Transplantation in an Elderly Patient With Alopecia Areata: A Case Report and Review of the Literature. World J. Clin. Cases 7 (19), 3074–3081. doi: 10.12998/wjcc.v7.i19.3074
Rinaldi F., Trink A., Pinto D. (2020). Efficacy of Postbiotics in a PRP–Like Cosmetic Product for the Treatment of Alopecia Area Celsi: A Randomized Double–Blinded Parallel–Group Study. Dermatol. Ther. (Heidelb.) 10 (3), 483–493. doi: 10.1007/s13555-020-00369-9
Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front Cell Infect Microbiol. 2022 Mar 7;12:834135. doi: 10.3389/fcimb.2022.834135. PMID: 35321316; PMCID: PMC8936186.
Gilhar A, Keren A, Shemer A, d'Ovidio R, Ullmann Y, Paus R. Autoimmune Disease Induction in a Healthy Human Organ: A Humanized Mouse Model of Alopecia Areata. J Invest Dermatol. 2012
Zhao Y, Zhang B, Caulloo S, Chen X, Li Y, Zhang X. Diffuse alopecia areata is associated with intense inflammatory infiltration and CD8+ T cells in hair loss regions and an increase in serum IgE level. Indian J Dermatol Venereol Leprol. 2012;78:709–714.
Sun J, Silva KA, McElwee KJ, King LE Jr, Sundberg JP. The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol. 2008;17:793–805.
Nagai H, Oniki S, Oka M, Horikawa T, Nishigori C. Induction of cellular immunity against hair follicle melanocyte causes alopecia. Arch Dermatol Res. 2006;298:131–134.
Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1459.
Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–9.
Rebello D, Wang E, Yen E, Lio PA, Kelly CR. Hair growth in two alopecia patients after fecal microbiota transplant. ACG Case Rep J. 2017;4:e107
Akilor OE, Mumcuoglu KY. Association between human demodicosis and HLA classes. Clin Exp Dermatol. 2003;28:70–3.
Jimenez-Acosta F, Planas L, Penneys N. Demodex mites contain immuno reactive lipase. Arch Dermatol. 1989;125:1436–7.
Daniela Pinto, Elisabetta Sorbellini, Barbara Marzani, Mariangela Rucco, Giammaria Giuliani, Fabio Rinaldi. Scalp bacterial shift in Alopecia areata. 2019 Apr 11;14(4):e0215206. doi: 10.1371/journal.pone.0215206. eCollection 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kinga Brzuszkiewicz, Gracjan Rudziński, Kinga Pożarowska, Arkadiusz Grunwald, Małgorzata Satora, Klaudia Piwowar, Jakub Klas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 605
Number of citations: 0