Relationships between the parameters of uric acid exchange and electroencephalograms in humans
DOI:
https://doi.org/10.12775/JEHS.2023.13.03.055Keywords
uricemia, uricosuria, EEG, relationships, humanAbstract
Background. During the implementation of the project "Physiological activity of uric acid", our group discovered four variants of the combination of levels of uricemia and uricosuria both in healthy rats and in people with chronic pyelonephritis and cholecystitis in the remission phase, which are accompanied by characteristic constellations of parameters of the autonomic nervous, endocrine, and immune systems, as well as the exchange of nitrogenous metabolites and electrolytes, the levels of which correlate with uricemia and/or uricosuria. The aim of this study is to clarify the relationship between parameters of uric acid metabolism and electroencephalogram (EEG) in humans. Materials and methods. Under an observations were 34 males and 10 females by age 24-76 years with chronic pyelonephritis and cholecystitis in the phase of remission. The object of the study was serum and urine levels of uric acid (uricase method) as well as EEG. Results. It was identified 12 parameters as characteristic of uric acid metabolism clusters. Another 42 EEG parameters were found to be out of the discriminant model, despite the clear recognition ability. A strong canonical correlation between EEG parameters and uricemia (R=0,729) and a moderate correlation with uricosuria (R=0,553) were revealed. Even stronger connections were found between changes in parameters of uric acid metabolism and EEG under the influence of balneotherapy: R=0,901 and 0,681 respectively. Conclusion. Uric acid has both activating and inhibitory effects on EEG parameters. The neurotropic effect of uric acid as a structural analogue of methylxanthines and adenosine is realized, apparently, through various adenosine receptors.
References
Apasov S, Chen JF, Smith P, Sitkovsky M. A2A receptor dependent and A2A receptor independent effects of extracellular adenosine on murine thymocytes in condicion of adenosine deaminase deficiency. Blood. 2000; 95(12): 3859-3867.
Baevsky RM, Berseneva AP. Use KARDIVAR system for determination of the stress level and estimation of the body adaptability. Standards of measurements and physiological interpretation. Moscow-Prague; 2008: 41.
Bombushkar IS. Features of the state of the neuroendocrine-immune complex and electrolyte-nitrogenous exchange under different variations of uric acid metabolism in female rats. Journal of Education, Health and Sport. 2020; 10(5): 410-421.
Bombushkar IS, Gozhenko AI, Korda IV, Badiuk NS, Zukow W, Popovych IL. Features of the exchange of electrolytes and nitrogenous metabolites under different options of uric acid exchange in healthy female rats. Journal of Education, Health and Sport. 2020; 10(4): 405-415.
Bombushkar IS, Gozhenko AI, Badiuk NS, Smagliy SS, Korda MM, Popovych IL, Blavatska OM. Relationships between parameters of uric acid metabolism and neuro-endocrine factors of adaptation [in Ukrainian]. Journal of marine medicine. 2022; 2(95): 59-74.
Bombushkar IS, Korda MM, Żukow X, Popovych IL. Sexual dimorphism in relationships between of plasma uric acid and some psycho-neuro-endocrine parameters. Journal of Education, Health and Sport. 2022; 12(12): 357-372.
Chebanenko OI, Flyunt IS, Popovych IL, Balanovs’kyi VP, Lakhin PV. Water Naftussya and Water-salt Exchange [in Ukrainian]. Kyїv: Naukova dumka; 1997: 141.
Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B. Adenosine Receptors in Modulation of Central Nervous System Disorders. Curr Pharm Des. 2019;25(26):2808-2827.
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells. 2020; 9(3): 785.
El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: A review. J Adv Res. 2017; 8(5): 487-493.
Goryachkovskiy АМ. Clinical Biochemistry [in Russian]. Odesa: Astroprint; 1998: 608.
Gozhenko АІ, Korda MM, Popadynets’ OO, Popovych IL. Entropy, Harmony, Synchronization and Their Neuro-Endocrine-Immune Correlates [in Ukrainian]. Odesa. Feniks; 2021: 232.
Gozhenko АІ, Korda MM, Smagliy SS, Badiuk NS, Zukow W, Klishch IM, Korda IV, Bombushkar IS, Popovych IL. Uric Acid, Metabolism, Neuro-Endocrine-Immune Complex. Odesa: Feniks; 2023: 266.
Gozhenko AI, Smagliy SS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Functional relationships between parameters of uric acid exchange and immunity in female rats. Actual problems of transport medicine. 2019; 4 (54): 123–131.
Gozhenko AI, Smagliy VS, Korda IV, Zukow W, Popovych IL. Cluster analysis of uric acid exchange parameters in female rats. Journal of Education, Health and Sport. 2019; 9(11): 277-286.
Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Features of immune status in different states of uric acid metabolism in female rats. Journal of Education, Health and Sport. 2019; 9(12): 167-180.
Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Functional relationships between parameters of uric acid exchange and immunity in female rats. Actual problems of transport medicine. 2019; 4(58): 123–131.
Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Relationships between parameters of uric acid exchange and immunity as well as microbiota in patients with neuroendocrine-immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(1): 165-175.
Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Relationships between changes in uric acid parameters metabolism and parameters of immunity and microbiota in patients with neuroendocrine-immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(2): 212-222.
Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J. Inhibition of T cell and NK cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol. 2008; 32(3): 527-535.
Huang S, Apasov S, Koshiba M, SitkovskiM. Role of A2A extracellular adenosine receptor mediated signaling in adenosine mediated inhibition of of T-cell activation and expansion. Blood. 1997; 90(4): 1600-1610.
Ivassivka SV, Popovych IL, Aksentiychuk BI, Flyunt IS. Physiological Activity of Uric Acid and its Role in the Mechanism of Action of Naftussya Water [in Ukrainian]. Kyїv: Computerpress; 2004: 163.
Jamwal S, Mittal A, Kumar P, Alhayani DM, Al-Aboudi A. Therapeutic Potential of Agonists and Antagonists of A1, A2a, A2b and A3 Adenosine Receptors. Curr Pharm Des. 2019; 25(26) :2892-2905.
Klecka WR. Discriminant Analysis [trans. from English in Russian] (Seventh Printing, 1986). In: Factor, Discriminant and Cluster Analysis. Moskva: Finansy i Statistika; 1989: 78-138.
Kul’chyns’kyi AB, Kovbasnyuk MM, Kyjenko VM., Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016; 6(10): 377-401.
Li S, Lu X, Chen X, Huang Z, Zhou H, Li Z, Ning Y. The prevalence and associated clinical correlates of hyperuricemia in patients with bipolar disorder. Front Neurosci. 2022; 16: 998747.
Morelli M, Carta AR, Kachroo A, Schwarzschild A. Pathophysiological roles for purines: adenosine, caffeine and urate. Prog Brain Res. 2010; 183: 183-208.
Navalta JW, Fedor EA, Schafer MA, Lyons TS, Tibana RA, Pereira GB, Prestes J. Caffeine affects CD8+ lymphocyte differently in naїve and familiar individuals following moderate intensity exercise. Int J Immunopathol Pharmacol. 2016; 29(2): 288-294.
Newberg AB, Alavi A, Baime M, Pourdehnad M, Santanna J, d’Aquili E. The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Research: Neuroimaging Section. 2001; 106: 113-122.
Ortiz R, Ulrich H, Zarate CA Jr, Machado-Vieira R. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry. 2015; 57: 117-131.
Popadynets’ OO, Gozhenko AI, Zukow W, Popovych IL. Relationships between the entropies of EEG, HRV, immunocytogram and leukocytogram. Journal of Education, Health and Sport. 2019; 9(5): 651-666.
Popovych IL, Bombushkar IS, Badiuk NS, Korda IV, Zukow W, Gozhenko AI. Features of the state of neuro-endocrine factors of adaptation under different options of uric acid metabolism in healthy female rats. Journal of Education, Health and Sport. 2020; 10(3): 352-362.
Popovych IL, Gozhenko AI, Bombushkar IS, Korda MM, Zukow W. Sexual dimorphism in relationships between of uricemia and some psycho-neuro-endocrine parameters. Journal of Education, Health and Sport. 2015; 5(5): 556-581.
Popovych IL, Gozhenko AI, Korda MM, Klishch IM, Popovych DV, Zukow W (editors). Mineral Waters, Metabolism, Neuro-Endocrine-Immune Complex. Odesa. Feniks; 2022: 252.
Popovych IL, Gozhenko AI, Zukow W, Polovynko IS. Variety of Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. Riga: Scholars' Press; 2020: 172.
Popovych IL, Kozyavkina OV, Kozyavkina NV, Korolyshyn TA, Lukovych YuS, Barylyak LG. Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology. 2014; 46(2): 139-148.
Popovych IL, Kul’chyns’kyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA. Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(2): 135-156.
Pousti A, Deemyad T, Malihi G. Mechanism of inhibitory effect of citalopram on isolated guinea-pig atria in relation to adenosine receptor. Hum Psychopharmacol. 2004; 19(5): 347-350.
Ruzhylo SV, Fihura OA, Zukow W, Popovych IL. Immediate neurotropic effects of Ukrainian phytocomposition. Journal of Education, Health and Sport. 2015; 5(4): 415-427.
Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health. 2017; 5: 258.
Shannon CE. A mathematical theory of information. Bell Syst Tech J. 1948; 27: 379-423.
Smagliy VS, Gozhenko AI, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Variants of uric acid metabolism and their immune and microbiota accompaniments in patients with neuroendocrine-immune complex dysfunction. Actual problems of transport medicine. 2020; 1(59): 114–125.
Sofaer JA, Emery AF. Genes for super-intelligense? J Med Genet. 1981; 18: 410-413.
Vigano S, Alatzoglou D, Irving M, Menetrier-Caux Ch, Caux Ch, Romero P, Coukos G. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front Immunol. 2019; 10: 925.
Young In Kim, Sun Mi Kim, Ji Sun Hong, Jinuk Song, Doug Hyun Han, Kyung Joon Min, Young Sik Lee. The Correlation between Clinical Symptoms, Serum Uric Acid Level and EEG in Patient with Bipolar Disorder [transl. from Korean to English]. Journal of Korean Neuropsychiatric Association. 2016; 55(1): 25-32.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Igor Bombushkar, Igor Popovych, Walery Zukow
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 149
Number of citations: 0