Molecular biology of the cell
DOI:
https://doi.org/10.12775/JEHS.2022.12.08.074Keywords
molecular biology, cell, epigenetics, transcription factors, cell signaling pathways, tumor molecular biologyAbstract
The book is intended for students studying medical and biological specialties.
CHAPTER I. EPIGENETICS
INTRODUCTION
The science of epigenetics looks at the mechanisms of molecular modifications of histones and DNA that can regulate gene activity without affecting the nucleotide sequences in the DNA molecule. Recognized epigenetic regulators are DNA methylation, post-translational modifications of histones, and non-coding RNAs (nkRNAs). One of the most important differences between eukaryotic cells and prokaryotes is the presence of a complex nucleo-protein chromatin complex in eukaryotes. It is in this form that the DNA molecule is stored in our cells. On the one hand, the complex structural organization of chromatin provides a compact arrangement of DNA in the cell nucleus. On the other hand, chromatin is directly involved in the process of regulating gene expression. At the same time, the nucleosome depicted in Fig. 1 (a structural and functional unit of chromatin) is considered as a key component in the processes of regulating gene expression.
The nucleus of the nucleosome is 8 histone proteins (octamers). The nucleus of the nucleosome consists of two copies of each of the histone proteins H2A, H2B, H3 and H4. The DNA chain, which includes 147 nucleotides, folds 1.65 times around the octamer of histones. The nucleosomes are arranged as a linear array along the DNA molecule in the form of "beads on a string". The linker section of DNA connecting adjacent nucleosomes (transcriptionally inactive) is sealed with H1-histone protein. The length of the linker section is 30 nm. Moreover, the site of the beginning of transcription is usually located inside the nucleosome. Consequently, the nucleosome serves as a gene repressor, preventing the initiation of transcription. That is, chromatin provides a total repression of genes. In contrast, transcription becomes possible as a result of chromatin remodeling factors that enable the "dismantling" of nucleosomes or otherwise alter their structure and organization. Thus, the repression (inactivation) of genes begins with wrapping the DNA molecule around the histones in the nucleosome, and the liberation of genes from repression (activation) involves freeing DNA from binding to histone proteins and unfolding DNA by chromatin remodeling factors (Lorch Y., Kornberg R. D., 2017). Thanks to this mechanism, selective expression of only those genes that are needed at a given time by the cell or tissue is possible. It should be emphasized that nucleosome repression extends not only to transcription, but also to most other biological processes associated with the DNA molecule, such as replication, mitotic division, repair of double-strand breaks, and maintenance of telomeres. Thus, epigenetic mechanisms control various physiological and pathological processes by regulating the expression of the corresponding genes by changing the availability of epigenetic control systems to chromatin.
The scope of application of epigenetic research methods is rapidly expanding. Currently, we are witnessing the active introduction of epigenetic approaches in the field of practical medicine aimed at diagnosing and treating dangerous human diseases.
CHAPTER II. TRANSCRIPTION FACTORS
INTRODUCTION
For the first time, the existence of transcription factors was revealed on the basis of a discovery that made it possible to establish in vitro purified RNA polymerase-II can initiate transcription on the DNA template in the presence of a cell extract (Weil P. A. et al., 1979). Further research aimed at the fractionation and identification of the general transcription factors (GTF) required to initiate transcription in vitro has identified similar factors in rats, Drosophila, and yeast and substantiated the assumption that GTFs are indeed "common" factors necessary for the expression of genes transcribed by RNA polymerase II. is highly conserved in a number of eukaryotic organisms (Matsui T. et al., 1980). We only mention RNA polymerase II because only this type of enzyme has the ability to synthesize mRNA. Whereas RNA polymerase I is responsible for the synthesis of pro-rRNA, and RNA polymerase III is responsible for the synthesis of tRNA and other non-coding cell RNAs.
Meanwhile, the regulation of transcription in eukaryotes is quite complex, since it depends on chromatin remodeling complexes (Burns L. G., Peterson C. L., 1997) and covalent modification of histone proteins (Natsume-Kitatani Y., Mamitsuka H., 2016). In transcription initiation, the immediate target of GTF is a well-defined promo zone of a structural gene. In the structure of the promotra of eukaryotes, the main elements and regulatory elements can be distinguished. The main elements of the promotra (bark promoter, see Fig. 2.1) can be attributed to the site for assembling the transcription initiation complex (PIC), including the TATA sequence located above from the transcription start site (TSS ), and an initiating sequence (Inr) covering the start site. Promoters may include a TATA unit, an initiator sequence (Inr), or both (Hampsey M., 1998). A third major element, the downstream promoter element (DPE), was originally described in Drosophila and is located about 30 p.p. below TSS. The DPE promoter element appears to function in conjunction with the Inr element as a binding site for the transcription factor TFIID on non-TATA promoters.
According to current research, the cellular (main) promoters of multicellular organisms that control the initiation of transcription by RNA polymerase II may contain short sequences of nucleotides called cow promoter elements (motifs) (e.g., the TATA block, the initiator (Inr), and the lower element of the cow promoter (DPE)) that recruit RNA polymerase II through a common transcription initiation mechanism (Dreos R. et al., 2021). The authors report that the classes of Promoters of Inr+DPE are not only present in the genome of Drosophila and humans and are structurally similar to each other, but may also be common to different species of multicellular organisms.
The most studied element of the cow promoter is the TATA box, but the TATA box is found only in about 10-20% of multicellular cortical promoters. Therefore, along with the TATA sequence, it is necessary to name other possible key DNA sequences known as cortical promoter elements, which include: BRE, MTE, TST and DPE sequences. The two BRE (TFIIB recognition element) motifs are located either above (BREu) or below (BREd) elements of the TATA box. It should be emphasized that TBP, TATA box, and BRE demonstrate high levels of conservatism in the range from archaebacteria to humans (Kadonaga J. T., 2012). In doing so, BREu as well as BREd have both positive and negative effects on transcription activity. The downstream core promoter element (DPE) was detected in the analysis of non-TATA gene promoters in Drosophila. The MTE element (motif ten element), which is located directly in front of the DPE, was identified as an overrepresented sequence of a cow promoter called "motif 10" and then discovered, that it is a functional element of a cow promoter. The MTE and DPE motifs exhibit high conservatism in the range from Drosophila to humans, and both motifs appear to be directly recognized by the subunits of the main transcription factor TFIID, TAF proteins that resemble histone proteins in structure. In turn, the TCT sequence regulates the transcription of ribosomal protein genes in Drosophila and humans. Although there are no universal cortical promoter elements that are present in all promoters, the concept of a cow promoter of nuclear RNA polymerase II can be defined as a minimum stretch of DNA that is sufficient to accurately initiate transcription by RNA polymerase II (Kadonaga J. T., 2012; Haberle V., Stark A., 2018). It should be noted that the results of modern research will constantly supplement the list of all new components of the cow promoter, for example, DNA-replicatedrelated element (DRE), Ohler 1,6 and 7 motifs (Danino Y. M. et al., 2015; Haberle V., Stark A., 2018). According to the authors, the bark promoter may be transformed in the course of evolution. Due to this, gene expression levels can be modulated by the composition of cow promoter elements. Such modulation is directly achieved through the emergence of combinations of new elements of the cow promoter, as a result of which an additional level of transcription regulation is realized.
To summarize the above facts, transcription is usually initiated at a specific position, the Transcription Initiation Site (TSS), at the 5' end of the gene. The TSS site is embedded in a bark promoter, which is a short sequence spanning 50 base pairs above and 50 below TSS. The cortical promoter serves as a binding platform for the components required to initiate transcription, including RNA polymerase II and related common transcription factors (GTFs).
Regulatory elements. The cortical promoter is sufficient to initiate transcription, but such transcription has low basal activity, which can be further activated, generally by more distally arranged regulatory elements called enhancers (discussed below). Enhancers bind regulatory proteins known as transcription factors, recruit transcription cofactors, and can further enhance transcription.
CHAPTER III. CELL SIGNALING PATHWAYS
INTRODUCTION
In a multicellular organism, the work of each cell is regulated by a large number of signals. These signals can be formed both in the organism itself, reflecting the specific needs of a living organism (metabolic state, stages of development, differentiation, reproduction), and in the form of a reaction to the effects of the external environment. The implementation of each of these signals encompasses all the biological and biochemical processes that lead from the cell's perception of the signal to the cell's response. A signal to a cell is something that is recognized by a specific receptor, which in turn can initiate a response to that signal.
A receptor is a structure that recognizes a signal, interprets the specificity of a signal, and translates it into the cell in the form of intracellular signaling molecules, a cascade of protein phosphorylation, and other pathways. Thus, signaling to the cell begins as soon as the signaling molecule (ligand) binds to its receptor – a protein with a complementary structure on the transmembrane protein or inside the cell. Growth factors, hormones, cytokines, neurotransmitters, components of the extracellular matrix, etc. The chemical nature of the ligands is diverse, including small molecules such as lipids (prostaglandins, steroid hormones), proteins (for example, peptide hormones, cytokines and chemokines, growth factors)., complex polymers of sugars (for example, β-glucan and zymosan) and their combinations (for example, proteoglycans), nucleic acids, etc. Binding of the ligand induces conformational changes in the receptor and is then translated into the cell by activating cascades of secondary messengers (kinases, phosphatases, GTPases, ions and small molecules such as cAMP, cGMP, diacylglycerol, etc.). Thus, the message is transmitted from the membrane to the nucleus, where the processes of gene expression, subsequent translation and targeting of the protein to the cell membrane and other organelles are triggered.
There are two main types of receptors – membrane (transmembrane) cell receptors and intracellular receptors. Membrane receptors are located on the plasma membrane and have a separate extracellular domain binding ligand, a transmembrane domain that is hydrophobic in nature, and a cytoplasmic domain. Cell surface receptors can be divided into G-protein-bound receptors, tyrosine kinase-bound receptors, and ionotropic receptors. When the ligand binds, plasma receptors undergo conformational changes in their extracellular domain and activate enzymatic mechanisms associated with the cytoplasmic domain, usually kinases, phosphatases and adapter proteins. These proteins can be covalently bound to the receptor and are capable of producing secondary messengers for subsequent signal transmission. Intracellular receptors can be nuclear receptors (estrogen receptor, glucocorticoid receptor, progesterone receptor, retinoic acid receptor, thyroid hormone receptor, etc.), cytoplasmic receptors or receptors located on the membranes of organelles (mitochondria, endoplasmic reticulum and Golgi apparatus).
Thus, information (ligand) received on the cell surface (e.g., through a membrane receptor) is transformed by specific enzyme systems associated with the plasma membrane receptor and transmitted in the form of secondary messengers to intracellular targets. All of these components form the path of signal transmission to the cell. However, a certain set of effector proteins, enzymes and substrates that implement cellular signals form this signaling pathway (signaling cascade).
Recently, however, there has been growing evidence that not only the signaling proteins themselves play an extremely important role in the regulation of cellular signaling, but also the
so-called scaffold proteins ("platform proteins", adaptor proteins), which coordinate the assembly of multicomponent protein complexes. Scaffold proteins can bind several elements of one signaling pathway into a single complex, thereby modulating the efficiency of transmission of the corresponding signal. Binding and by bringing two or more signaling proteins closer together, these platform proteins direct the flow of information in the cell, activating, coordinating and regulating signaling events in regulatory networks (Skovorodnikova P.A. et al., 2017).
According to the literature, several types of scaffold proteins have been described, which cover a wide range of functions. This group of proteins is usually divided into three main categories (Fig. 1): simple proteins that bind two functionally dependent proteins (adaptors), larger multi-domain proteins designed to bind a large number of proteins and regulate their activity by complex mechanisms (scaffold⁄anchoring proteins) and proteins specialized for initiating signaling cascades by localizing certain proteins-components of signaling pathways on the cell membrane (docking proteins) ( Buday L., Tompa P, 2010) The presence of such protein platforms increases the efficiency and selectivity of the signaling pathway, and also allows the formation of regulatory feedback.
e ultimate target of cell signaling pathways are transcription factors that regulate gene expression and ultimately allow the resulting signal to be converted into a change in cellular activity (Brivanlou A. H., Darnell J. E., 2002). Most signaling pathways initiate a cascade of several intracellular signaling molecules that eventually form activation proteins or transcription repressors designed to bind to a specific DNA sequence. Eukaryotic transcription factors, like other proteins, are transcribed in the nucleus, but then their translation takes place in the cytoplasm.
Signal transmission to the cell is a multifactorial system, which is based on nodular complexes of special proteins of signaling cascades. However, none of the signaling pathways in the cells work in isolation. The interaction of signaling mechanisms is inevitable in complex complexes, when the system perceives a combination of stimuli (hormones, cytokines, growth factors and pathogenic ligands), but at the same time preserves the accuracy of signal transmission (Saini N., Sarin A., 2021).
It is well known that a relatively small number of signaling pathways control the development of all cell types in mammals (Brivanlou A. H., Darnell J. E., 2002). Combinations and time of action of the main signaling pathways determine decisions about the fate of the cell, including events such as cell differentiation in the process of ontogenesis (Li R., Elowitz M.V., 2019; de Roo J. J. D., Staal F. J. T., 2020) and cell malignancy (Dreesen O., Brivanlou A.N., 2007; Skovorodnikova P.A. et al., 2017). Consider some of the cell signaling pathways that are most important medically important.
CHAPTER IV. MOLECULAR BIOLOGY OF THE TUMOR: MECHANISMS OF INITIATION, PROMOTION AND PROGRESSION
INTRODUCTION
Tumor diseases occupy a leading place, both in terms of morbidity and mortality. However, despite the advances in the study of molecular genetic patterns, many unresolved questions remain. On the one hand, the spectrum of molecular markers makes it possible to diagnose, predict the course, degree of malignancy, rate of tumor progression and predict a possible response to the therapy. On the other hand, those processes that occur at the molecular level are not characterized by stability, they are dynamic and are associated with a change in the genetic profile - the appearance of many clones of tumor cells with a different set of properties. The heterogeneity of tumor diseases simultaneously complicates the strategy of managing such patients, creating the prerequisites for further study of the molecular genetic characteristics of tumor cells.
References
Beylerli O.A., Gareev I.F. Long non-coding RNAs: what are the prospects?//Preventive Medicine 2020, Vol. 23, No. 2, pp. 124-128 https://doi.org/10.17116/profmed202023021124
Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic controlNat. Rev. Genet.-2016.-T.17.-S.487–500
doi: 10.1038/nrg.2016.59
Alló M., Agirre E., Bessonov S. et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells//Proc Natl Acad Sci U S A.-2014 .-T.111,#44.-S.15622-15629
doi: 10.1073/pnas.1416858111
Ameyar-Zazoua M., Rachez C., Souidi M. et al. Argonaute proteins couple chromatin silencing to alternative splicing//Nat Struct Mol Biol.-2012.-T.19,#10.-S.998-1004
doi: 10.1038/nsmb.2373
Bannister A.J, Schneider R., Kouzarides T. Histone methylation: dynamic or static?//Cell.-2002.-T.109.-S.801-806
doi: 10.1016/s0092-8674(02)00798-5
Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications//Cell Research.-2011.-T.21.-S.381-395
doi:10.1038/cr.2011.22
Black J.C., Van Rechem C., Whetstine J.R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact//Mol Cell.-2012.-T.48,#4.-S.491-507
doi:10.1016/j.molcel.2012.11.006
Braconi C., Kogure T., Valeri N et al. (2011). microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer//Oncogene.-2011.-T.30.-C.4750–4756
doi: 10.1038/onc.2011.193
Cabili M.N., Trapnell C., Goff L. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses//Genes Dev.-2011.-T.25,#18.-S.1915-1927
doi: 10.1101/gad.17446611
Catalanotto C., Cogoni C., Zardo G. MicroRNA in Control of Gene Expression:
An Overview of Nuclear Functions//Int J Mol Sci.-2016.-T.17,#10.-S.1712
doi: 10.3390/ijms17101712
Chang B, Chen Y, Zhao Y, Bruick RK. JMJD6 is a histonearginine demethylase// Science.-2007.-T.318.-S.444-447
doi: 10.1126/science.1145801
Chen K, Zhao BS, He C, Nucleic Acid Modifications in Regulation of Gene Expression//Cell Chem Biol.-2016.-T.23,#1.-S.74–85
doi: 10.1016/j.chembiol.2015.11.007
Cheng X., Blumenthal R.M. Coordinated Chromatin Control: Structural and Functional Linkage of DNA and Histone Methylation//Biochemistry.-2010.-T.49,#14.-S.2999–3008
doi:10.1021/bi100213t
Chiyomaru T., Fukuhara S., Saini S. et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells//J Biol Chem.-2014.-T.289,#18.-S.12550-12565
doi: 10.1074/jbc.M113.488593
Derrien T, Johnson R., Bussotti G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression//Genome Res.-2012.-T.22,#9.-S.1775-1789
doi: 10.1101/gr.132159.111
Estève P.O., Chin H.G., Smallwood A. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication//Genes Dev.-2006.-T.20,#22.-S.3089-3103
doi: 10.1101/gad.1463706
Foldes-Papp Z., Konig K., Studier H. et al. Trafficking of mature miRNA-122 into the nucleus of live liver cells//Curr Pharm Biotechnol.-2009.-T.10.-S.569–578
doi: 10.2174/138920109789069332
Gagnon K.T., Li L., Chu Y. et al. RNAi factors are present and active in human cell nuclei. Cell Rep.-2014.-T.6,#1.-S.211-221
doi: 10.1016/j.celrep.2013.12.013
Gao Y., Feng C., Zhang Y. et al. TRmir: A Comprehensive Resource for Human Transcriptional Regulatory Information of MiRNAs//Front. Genet.-2022.-T.13.-S.808950
doi: 10.3389/fgene.2022.808950
Hansen T.B., Wiklund E.D., Bramsen, J.B. et al. miRNA-dependent gene
silencing involving Ago2-mediated cleavage of a circular antisense RNA//EMBO J.-2011.-T.30.-S.4414–4422
doi: 10.1038/emboj.2011.359
Hashimoto H., Vertino P.M., Cheng X. Molecular coupling of DNA methylation and histone methylation//Epigenomics.-2010.-T.2,#5.-S.657–669
doi: 10.2217/epi.10.44
Huang V., Place R.F., Portnoy V. et al. Upregulation of cyclin B1 by miRNA and its implications in cancer//Nucleic Acids Res.-2012.-T.40,#4.-S.1695-1707
doi: 10.1093/nar/gkr93
Hughes A.L., Kelley J.R., Klose R.J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation// Biochim Biophys Acta Gene Regul Mech.-2020.-T.1863,#8.-S.194567
doi: 10.1016/j.bbagrm.2020.194567
Hwang H.W., Wentzel E.A., Mendell J.T A hexanucleotide element directs microRNA nuclear import//Science.-2007.-T.315.-S.97–100
doi: 10.1126/science.1136235
Kopp F., Mendell J.T. Functional classification and experimental dissection of long noncoding RNAs//Cell.-2018.-T.172,#3.-S.393–407
doi:10.1016/j.cell.2018.01.011
Lehnertz B., Ueda Y., Derijck A.A. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin//Curr. Biol.-2003.-T.13.-S.1192–1200
doi: 10.1016/s0960-9822(03)00432-9
Li Y. Modern Epigenetics Methods in Biological Research//Methods.-2021.-T.187.-S.104–113
doi:10.1016/j.ymeth.2020.06.022
Li Y., Chen X., Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications//EMBO Reports.-2021.-T.22.-S.e51803
doi 10.15252/embr.202051803
Liang H., Zhang J., Zen K. et al. Nuclear microRNAs and their unconventional
role in regulating non-coding RNAs//Protein Cell.-2013.-T.4,#5.-S.325–330
doi 10.1007/s13238-013-3001-5
Liu J., Hu J., Corey D.R. Expanding the action of duplex RNAs into the nucleus: Redirecting alternative splicing Nucleic Acids Res//2012.-T.40,#3.-S.1240-1250
doi: 10.1093/nar/gkr780
Liu J., Hu J., Hicks J.A. et al. Modulation of splicing by single-stranded silencing
RNAs//Nucleic Acid Ther.-2015.-T.25,#3.-S.113-120
doi: 10.1089/nat.2014.0527
Lorch Y., Kornberg R.D. Chromatin-remodeling for transcription//Quarterly Reviews of Biophysics.-2017.-T.50.-S.e5
doi:10.1017/S003358351700004X
Majid S., Dar A.A., Saini S. et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer//Cancer.-2010.-T.116,#24.-S.5637-5649
doi: 10.1002/cncr.25488
McCabe M.T., Brandes J.C., Vertino P.M. Cancer DNA Methylation: Molecular Mechanisms and Clinical Implications//Clin Cancer Res.-2009.-T.15,#,12.-S.3927–3937
doi:10.1158/1078-0432.CCR-08-2784
Meissner A., Mikkelsen T.S., Gu H. et al Genome-scale DNA methylation maps of pluripotent and differentiated cells//Nature.-2008.-T.454.-S.766 – 770
doi: 10.1038/nature07107
Melé M., Mattioli K., Mallard W. et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs//Genome Res.-2017.-T.27,#1.-S.27-37
doi: 10.1101/gr.214205.116
Patel A.B., Moore C.M., Greber B.J. et al. Architecture of the chromatin remodeler
RSC and insights into its nucleosome engagement//eLife.-2019.-T.8.-S.e54449 doi: https://doi.org/10.7554/eLife.54449
Place R.F., Li L.C., Pookot D. et al. MicroRNA-373 induces expression of genes with complementary promoter sequences//Proc Natl Acad Sci U S A.-2008.-T.105,#5.-S.1608-1613
doi: 10.1073/pnas.0707594105
Politz J.C., Zhang F., Pederson T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells//Proc Natl Acad Sci U S A.-2006.-T.103,#50.-S.18957-18962
doi: 10.1073/pnas.0609466103
Politz J.C., Hogan E.M., Pederson T. MicroRNAs with a nucleolar location//RNA.-2009.-T.15,#9.-S.1705-1715
doi: 10.1261/rna.1470409
Popadin K., Gutierrez-Arcelus M., Dermitzakis E.T., Antonarakis S.E. Genetic and Epigenetic Regulation of Human lincRNA Gene Expression//Am J Hum Genet.-2013.-T.93,#6.-S.1015-1026
doi: 10.1016/j.ajhg.2013.10.022
Poziello A., Nebbioso A., Stunnenberg H.G. et al. Recent insights into Histone Acetyltransferase-1: biological function and involvement in pathogenesis//EPIGENETICS.-2021.-T.16,#8.-S.838–850
https://doi.org/10.1080/15592294.2020.1827723
Ransohoff J.D., Wei Y., Khavari P.A. The functions and unique features of long intergenic non-coding RNA//Nat Rev Mol Cell Biol.-2018.-T.19,#3.-S.143–157 doi:10.1038/nrm.2017.104
Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs//Annu Rev Biochem.-2012.-T.81.-S.145-166
doi: 10.1146/annurev-biochem-051410-09290
Santos-Rosa H, Kirmizis A, Nelson C, et al. Histone H3 tail clipping regulates gene expression//Nat Struct Mol Biol.-2009.-T.16.-S.17-22
doi: 10.1038/nsmb.1534
Schubeler D., Lorincz M.C., Cimbora D.M. et al. Genomic Targeting of Methylated DNA: Influence of Methylation on Transcription, Replication, Chromatin Structure, and Histone Acetylation//Molecular and cellular biology.-2000.-T.20,#24.-S.9103–9112
doi:https://doi.org/10.1128/MCB.20.24.9103-9112.2000
Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1//Cell.-2004.-T.119.-S.941-953
doi: 10.1016/j.cell.2004.12.012
Smallwood A., Estève P.-O., Pradhan S., Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing//Genes & Dev.-2007.-T.21.-S.1169-1178
doi/10.1101/gad.1536807
Sobel R.E., Cook R.G., Perry C.A. et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4//Proc Natl Acad Sci.-1995.-T.92.-S.1237–1241
doi: 10.1073/pnas.92.4.1237
Spitale R.C., Tsai M.-C., Chang H.Y. RNA templating the epigenome Long noncoding RNAs as molecular scaffolds//Epigenetics.-2011.-T.6,#5.-S.539-543
doi: 10.4161/epi.6.5.15221
Stoll S., Wang C., Qiu H. DNA Methylation and Histone Modification
in HypertensionInt. J. Mol. Sci.-2018.-T.19.-S.1174
doi:10.3390/ijms19041174
Su X., Wellen K.E., Rabinowitz J.D. Metabolic control of methylation and acetylation//Curr Opin Chem Biol.-2016-T.30.-S.52–60
doi:10.1016/j.cbpa.2015.10.030
Tang R., Li L., Zhu D. et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system//Cell Res.-2012.-T.22.-S.504–515
doi: 10.1038/cr.2011.137
Verdone L., Agricola E., Caserta M., Di Mauro E. Histone acetylation in gene regulation//Brief Funct Genomic Proteomic.-2006.-T.5,#3.-S.209-221
doi: 10.1093/bfgp/ell028
Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs//Mol Cell.-. 2011.-T.43,#6.-S.904-914
doi: 10.1016/j.molcel.2011.08.01
Wang S., Talukder A., Cha M. et al. Computational annotation of miRNA transcription start sites//Briefings in Bioinformatics.-2021.-T.22,#1.-S.2021, 380–392
doi: 10.1093/bib/bbz178
Whetstine JR, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases//Cell.-2006.-T.125.-S.467-481
doi: 10.1016/j.cell.2006.03.028
Wilusz J.E., Sunwoo H., Spector D.L. Long noncoding RNAs: functional
surprises from the RNA world//Genes Dev.-2009.-T.23,#13.-S.1494-1504
doi: 10.1101/gad.1800909
Wu S.C., Zhang Y. Role of Protein Methylation and Demethylation in Nuclear Hormone Signaling//Mol Endocrinol.-2009.-T.23,#9.-S.1323–1334
doi: 10.1210/me.2009-0131
Xiao B., Jing C., Kelly G. et al. Specificity and mechanism of the histone
methyltransferase Pr-Set7//Genes and Development.-2005.-T.19.-S.1444–1454
doi/10.1101/gad.1315905
Zhang Y., Fan M., Geng G.et al. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region//Retrovirology.-2014.-T.11.-S.23.
doi: 10.1186/1742-4690-11-23
Zhao Q., Rank G., Tan Y.T. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing//Nat Struct Mol Biol.-2009.-T.16,#3.-S.304–311
doi:10.1038/nsmb.1568
Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns//Development-2007.-T.134.-S.3959–3965
doi.org/10.1242/dev.001131
Zisoulis D.G., Kai Z.S., Chang R.K., Pasquinelli A.E. Autoregulation of microRNA biogenesis by let-7 and Argonaute//Nature.-2012.-T.486.-S.541–544
doi: 10.1038/nature11134
Putljaev E.V., Ibragimov A.N., Lebedeva L.A. i soavt. Struktura i funkcii kompleksa mediator//Biohimija.-2018.-T.83,vyp. 4.-S.577 – 591
Razin S.V., Gavrilov A.A., Ul'janov S.V. Reguljatornye jelementy jeukarioticheskogo genoma, kontrolirujushhie transkripciju//Molekuljarnaja biologija.-2015.-T.49, # 2.-S.212–223
doi: 10.7868/S0026898415020123
Adachi N, Senda T, Horikoshi M (2016) Uncovering ancient transcription systems with a novel evolutionary indicator//Sci Rep.-2016.-T.6,#1.-S.1–12
doi: 10.1038/srep27922
Agrawal R., Heimbruch K.E., Rao S. Genome-Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease//Compr Physiol.-2018.-T.9,#1.-S.439-455
doi: 10.1002/cphy.c180028
Allen B.L., Taatjes D.J. The Mediator complex: a central integrator of transcription//Nat Rev Mol Cell Biol.-2015.-T.16,#3.-S.155–166 doi:10.1038/nrm3951
Aranda-Orgilles B., Saldaña-Meyer R., Wang E. et al. MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control
hematopoiesis//Cell Stem Cell.-2016.-T.19.-S.784–799
doi: 10.1016/j.stem.2016.08.004
Balamotis M.A., Pennella M.A., Stevens J.L. et al. Complexity in transcription control at the activation domain-mediator interface//Sci Signal.-2009.-T.2.-S.ra20
doi: 10.1126/scisignal.1164302
Bhuiyan T., Timmers H.Th.M. Promoter Recognition: Putting TFIID on the Spot// Trends in Cell Biology.-2019.-T.29,#9.-S.752-763
https://doi.org/10.1016/j.tcb.2019.06.004
Burns L. G., Peterson C. L. 1997. Protein complexes for remodeling
chromatin//Biochim. Biophys. Acta.-1997.-T.1350,#2.-S.159–168
doi: 10.1016/s0167-4781(96)00162-5
Carrera I., Janody F., Leeds N. et al. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13//Proc Natl Acad Sci U S A.-2008.-T.105,#18.-S.6644-6649
doi: 10.1073/pnas.0709749105
Clarke P.A., Ortiz-Ruiz M.J., TePoele R. et al. (2016). Assessing the mechanism and therapeutic potential of modulators of the human mediator complex-associated protein kinases//eLife.-2016.-T.5.-S.e20722
doi: 10.7554/eLife.20722
Compe E., Genes C.M., Braun C. et al. TFIIE orchestrates the recruitment of the TFIIH kinase module at promoter before release during transcription// Nat. Commun.-2019.-T.10.-S.2084
doi: 10.1038/s41467-019-10131-1
Conaway R.C., Conaway J.W. Origins and Activity of the Mediator Complex// Semin Cell Dev Biol.-2011.-T.22,#7.-S.729–734
doi: 10.1016/j.semcdb.2011.07.021
Danino Y.M., Even D., Ideses D., Juven-Gershon T. The core promoter: At the heart of gene expression//Biochim Biophys Acta.-2015.-T.1849,#8.-S.1116-1131
doi: 10.1016/j.bbagrm.2015.04.003
Dannappel M.V., Sooraj D., Loh J.J., Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules//Front. Cell Dev. Biol.-2019.-T6.-S.171
doi: 10.3389/fcell.2018.00171
de Martin X., Sodaei R., Santpere G. Mechanisms of Binding Specificity among bHLH Transcription Factors//Int J Mol Sci.-2021.-T.22,#17.-S.9150
doi: 10.3390/ijms22179150
Deng W., Roberts S.G. TFIIB and the regulation of transcription by RNA
polymerase II//Chromosoma.-2007.-T.116.-S.417–429
doi: 10.1007/s00412-007-0113-9
Dergai O., Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes//Trends Genet.-2019.-T.35,#6.-S.457-469
doi: 10.1016/j.tig.2019.04.001
Dimitrova E., Kondo T., Feldmann A. et al. FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment//Elife.-2018.-T.7.-S.e37084
doi: 10.7554/eLife.37084
Dreos R., Sloutskin A., Malachi N. et al. (2021) Computational identification and experimental characterization of preferred downstream positions in human core promoters//PLoS Comput Biol.-2021.-T.17,#8.-S.e1009256
https://doi.org/10.1371/journal.pcbi.1009256
El Khattabi L., Zhao H., Kalchschmidt J. et al. A pliable Mediator acts as a functional rather than an architectural bridge between promoters and enhancers//Cell.-2019.-T.178,#5.-S.1145–1158.e20. doi:10.1016/j.cell.2019.07.011
Farrelly, L.A., Thompson R.E., Zhao S. et al. (2019) Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3//Nature.-2019.-T.567,#7749.-S. 535–539
doi: 10.1038/s41586-019-1024-7
Flanagan P.M., Kelleher R.J., Sayre M.H. et al. A mediator required for activation of RNA polymerase II transcription in vitro//Nature.-1991.-T.350,#6317.-S.436-438
doi: 10.1038/350436a0
Fondell J.D., Ge N., Roeder R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex//Proc Natl Acad Sci U S A.-1996.-T.93,#16.-S.8329-8333
doi: 10.1073/pnas.93.16.8329
Gao W.-W., Xiao R.-Q., Zhang W.-J. et al. JMJD6 Licenses ERα-Dependent Enhancer and Coding Gene Activation by Modulating the Recruitment of the CARM1/MED12 Co-activator Complex//Mol Cell.-2018.-T.70,#2.-S.340-357
doi: 10.1016/j.molcel.2018.03.006
Grueter C.E., van Rooij E., Johnson B.A. et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13//Cell.-2012.-T.149.-S.671–683
doi: 10.1016/j.cell.2012.03.029
Haberle V., Stark A. Eukaryotic core promoters and the functional basis of
transcription initiation//Nat Rev Mol Cell Biol.-2018.-T.19,#10.-S.621–637 doi:10.1038/s41580-018-0028-8
Hampsey M. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery//Microbiology and molecular biology reviews.-1998.-T.62,#2.-S.465–503
doi: 10.1128/mmbr.62.2.465-503.1998
Hoeppner S., Baumli S., Cramer P. Structure of the Mediator Subunit Cyclin C and its Implications for CDK8 Function//J. Mol. Biol.-2005.-T.350.-S.833–842
doi:10.1016/j.jmb.2005.05.041
Huang S., Hölzel M., Knijnenburg T. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling//Cell.-2012.-T.151,#5.-S.937-950
doi: 10.1016/j.cell.2012.10.035
Ibragimov A.N., Bylino O.V., Shidlovskii Y.V. Molecular Basis of the Function of
Transcriptional Enhancers//Cells.-2020.-T.9,#7.-S.1620
doi: 10.3390/cells9071620
Jawhari A., Uhring M., De Carlo S. et al. Structure and oligomeric state of human transcription factor TFIIE//EMBO Rep.-2006.-T.7,#5.-S.500-505
doi: 10.1038/sj.embor.7400663
Kadonaga J.T. Perspectives on the RNA Polymerase II Core Promoter//Wiley Interdiscip Rev Dev Biol.-2012.-T.1,#1.-S.40–51
doi:10.1002/wdev.21
Kang S.W., Kuzuhara T., Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68//Genes Cells.-2000.-T.5,#4.-S.251-263
doi: 10.1046/j.1365-2443.2000.00323.x
Knuesel M.T., Meyer K.D., Bernecky C., Taatjes D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function//Genes Dev.- 2009.-T.23,#4.-S.439-451
doi: 10.1101/gad.1767009
Krishnamurthy S., Hampsey M. Eukaryotic transcription initiation//Curr Biol.-2009.-T.19,#4.-S.R153-R156
doi: 10.1016/j.cub.2008.11.052
Krivega I., Dean A. Enhancer and promoter interactions — long distance calls//Curr Opin Genet Dev.-2012.-T.22,#2.-S.79–85
doi: 10.1016/j.gde.2011.11.001
Lai F., Orom U.A., Cesaroni M. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription//Nature.-2013.-T.494,#7438.-S.497-501
doi: 10.1038/nature11884
Larroux C., Luke G.N., Koopman P. et al. Genesis and Expansion of Metazoan Transcription Factor Gene Classes//Mol. Biol. Evol.-2008.-T.25,#5.-S.980–996
doi:10.1093/molbev/msn047
Lee T.I., Young RA. Transcriptional Regulation and its Misregulation in Disease//Cell. 2013.-T.152,#6.-S.1237–1251
doi:10.1016/j.cell.2013.02.014
Lemon B., Tjian R. Orchestrated response: a symphony of transcription factors for gene control//Genes Dev.-2000.-T.14,#20.-S.2551-2569
doi: 10.1101/gad.831000
Leurent C., Sanders S., Ruhlmann C. et al. Mapping histone fold TAFs within yeast TFIID//EMBO Journal.-2002.-T.21,#13.-S.3424-3433
doi: 10.1093/emboj/cdf342
Luse D.S. Rethinking the role of TFIIF in transcript initiation by RNA polymerase II//Transcription.-2012.-T.3,#4.-S.156-159
doi: 10.4161/trns.20725
Luse D.S. The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled?//Transcription.-2014.-T.5,#1.-S.e27050
doi: 10.4161/trns.27050
Luyties O., Taatjes D.J. The Mediator kinase module: an interface between cell signaling and transcription//Trends Biochem Sci.-2022.-T.47,#4.-S.314–327
doi:10.1016/j.tibs.2022.01.002
Malecova B., Gross P., Boyer-Guittaut M. et al. The Initiator Core Promoter Element Antagonizes Repression of TATA-directed Transcription by Negative Cofactor NC2//Journal of biological chemistry.-2007.-T.282,#34.-S.24767–24776
doi: 10.1074/jbc.M702776200
Malik S., Roeder R.G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation//Nat Rev Genet.-2010.-T.11,#11.-S.761–772
doi:10.1038/nrg2901
Matsui T., Segall J., Weil P. A., Roeder R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II//J. Biol. Chem.-1980.-T.255.-S.11992–11996
PMID: 7440580
Miao Y.L., Gambini A., Zhang Y. et al. Mediator complex component MED13 regulates zygotic genome activation and is required for postimplantation development in the mouse//Biol. Reprod.-2018.-T.98.-S.449–464
doi: 10.1093/biolre/ioy004
Natsume-Kitatani Y., Mamitsuka H. Classification of Promoters Based on the
Combination of Core Promoter Elements Exhibits Different Histone Modification Patterns//PLoS ONE.-2016.-T.11,#3.-S. e0151917 doi:10.1371/journal.pone.0151917
Nogales E., Louder R.K., He Y. Structural Insights into the Eukaryotic Transcription Initiation Machinery//Annu Rev Biophys.-2017.-T.46.-S.59-83
doi: 10.1146/annurev-biophys-070816-033751
O’Brien M.J., Ansari A. Beyond the canonical role of TFIIB in eukaryotic transcription//Current Genetics.-2022.-T.68.-S.61–67
https://doi.org/10.1007/s00294-021-01223-x
Ong C.-T., Corces V.G. Enhancer function: new insights into the regulation of tissuespecific gene expression//Nat Rev Genet.-2011.-T.12,#4.-S.283–293 doi:10.1038/nrg2957
Osman S., Mohammad E., Lidschreiber M. et al. The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II//J. Biol. Chem.-2021.-T.296.-S.100734
https://doi.org/10.1016/j.jbc.2021.100734
Patel A.B., Louder R.K., Greber B.J. et al. Structure of human TFIID and mechanism of TBP loading onto promoter DNA//Science.-2018.-T.362,#6421.-S.eaau8872
doi: 10.1126/science.aau8872
Phan T., Maity P., Ludwig C. et al. Nucleolar TFIIE plays a role in ribosomal biogenesis and performance//Nucleic Acids Res.-2021 Nov 8;49(19):11197-11210.
doi: 10.1093/nar/gkab866
Poss Z.S., Ebmeier C.C., Taatjes D.J. The Mediator complex and transcription regulation//Crit Rev Biochem Mol Biol.-2013.-T.48,#6.-S.575–608
doi: 10.3109/10409238.2013.840259
Rocha P.P., Scholze M., Bleiss W., Schrewe H. Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling//Development.-2010.-T.137,#16.-S.2723-2731
doi: 10.1242/dev.053660
Roeder R.G. 50+ years of eukaryotic transcription: an expanding universe of
factors and mechanisms//Nat Struct Mol Biol.-2019.-T.26,#9.-S.783–791 doi:10.1038/s41594-019-0287-x
Sartorelli V., Lauberth S.M. Enhancer RNAs are an important regulatory layer of the epigenome//Nat Struct Mol Biol.-2020.-T.27,#6.-S.521–528
doi:10.1038/s41594-020-0446-0
Soutoglou E., Demény M.A., Scheer E. et al. The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners// Mol Cell Biol.-2005.-T.25,#10.-S.4092-4104
doi: 10.1128/MCB.25.10.4092-4104.2005
Srivastava S., Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases//J Cell Physiol.-2021.-T.236,#5.-S.3163-3177
doi: 10.1002/jcp.30099
Struhl K. Yeast transcriptional regulatory mechanisms//Annu. Rev.Genetics.-1995.-T.29.-S.651-674
Takahashi H., Parmely T.J., Sato S. et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors//Cell.-2011.-T.146,#1.-S.92-104
doi: 10.1016/j.cell.2011.06.005
Thompson C.M., Koleske A.J., Chao D.M., Young R.A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast//Cell.-1993.-T.73,#7.-S.1361-1375
doi: 10.1016/0092-8674(93)90362-t
Tobias I.C., Abatti L.E., Moorthy S.D. et al. Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale//Genome.-2021.-T.64,#4.-S.426-448
doi: 10.1139/gen-2020-0104
Torres-Machorro, A.L. Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix–Loop–Helix Transcription Factors//Int. J. Mol. Sci.-2021.-T.22.-S.12855
https://doi.org/10.3390/ijms222312855
Tsai K.L., Tomomori-Sato C., Sato S. et al. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex//Cell.-2014.-T.157,#6.-S.1430–1444
doi: 10.1016/j.cell.2014.05.015
Wang R., Tang Q. Current Advances on the Important Roles of Enhancer RNAs in Molecular Pathways of Cancer// Int. J. Mol. Sci.-2021.-T.22.-S.5640 https://doi.org/10.3390/ijms22115640
Wang Y., Roberts S. New insights into the role of TFIIB in transcription initiation//Transcription.-2010.-T.1,#3.-S.126–129
doi: 10.4161/trns.1.3.12900
Weil P. A., Luse D. S., Segall J., Roeder R. G. Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA//Cell.-1979.-T.18.-S.469–484
doi: 10.1016/0092-8674(79)90065-5
Weirauch M.T., Hughes T.R. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution//Subcell Biochem.-2011.-T.52.-S.25-73.
doi: 10.1007/978-90-481-9069-0_3
Whyte W.A., Orlando D.A., Hnisz D. et al. Master Transcription Factors and Mediator Establish SuperEnhancers at Key Cell Identity Genes//Cell.-2013.-T.153,#2.-S.307–319
doi:10.1016/j.cell.2013.03.035
Zhao M., Yang X., Fu Y. et al. Mediator MED15 modulates transforming growth factor beta (TGFβ)/Smad signaling and breast cancer cell metastasis//J Mol Cell Biol.-2013.-T.5,#1.-S.57-60
doi: 10.1093/jmcb/mjs054
Vasilec Ju.D., Arnockaja N.E., Kudrjavcev I.A., Shevchenko V.E. Wnt-signal'nyj kaskad v patogeneze mul'tiformnoj glioblastomy//Uspehi molekuljarnoj onkologii.-2018.-T.5,#4.-S.94–103
doi: 10.17650/2313-805X-2018-5-4-94-103
Domninskij D.A. Mehanizmy realizacii signal'noj transdukcii//Onkogematologija.-2011.-T.6,#1.-S.76-84 https://doi.org/10.17650/1818-8346-2011-6-1-76-84
Isaeva A.V., Zima A.P., Shabalova I.P i soavt. β-Katenin: struktura, funkcii i rol' v opuholevoj transformacii jepitelial'nyh kletok//Vestnik RAMN.-2015.-T.70,#4.-S.475–483
doi: 10.15690/vramn.v70.i4.1415
Kulikova K.V., Kibardin A.V., Gnuchev N.V. i soavt. Signal'nyj put' wnt i ego znachenie dlja razvitija melanomy//Sovremennye tehnologii v medicine.-2012.-#3.-S.107-112
Katanaev V.L. Vnutrikletochnaja peredacha signala ot wnt-ligandov i soprjazhennyh s g-belkami frizzled-receptorov//Biohimija.-2010.-T.75,vyp.12.-S.1642 – 1650
Skovorodnikova P.A. i soavt. Skaffold-belki semejstva IQGAP – mul'tifunkcional'nye reguljatory vnutrikletochnoj signalizacii i opuholevoj transformacii//Uspehi molekuljarnoj onkologii.-2017.-T.4,#2.-S.35-45
doi: 10.17650/2313-805X-2017-4-2-36-45
Aoki M., Fujishita T. Oncogenic Roles of the PI3K/AKT/mTOR
Axis//Curr Top Microbiol Immunol.-2017.-T.407.-S.153-189
doi: 10.1007/82_2017_6
Bar-Shavit R., Maoz M., Kancharla A. et al. G Protein-Coupled Receptors in Cancer//Int J Mol Sci.-2016.-T.17,#8.-S.1320
doi: 10.3390/ijms17081320
Bray S.J. Notch Signalling in context//Nat Rev Mol Cell Biol.-2016.-T.17,#11.-S.722-735
doi: 10.1038/nrm.2016.94
Brivanlou A.H., Darnell J.E. Signal transduction and the control of gene expression//Science.-2002.-T.295,#5556.-S.813-818
doi: 10.1126/science.1066355
Buday L., Tompa P. Functional classification of scaffold proteins and related molecules//FEBS J.-2010.-T.277,#21.-S.4348-4355
doi: 10.1111/j.1742-4658.2010.07864.x
Budi E.H., Duan D., Derynck R. Transforming Growth Factor-b Receptors and Smads: Regulatory Complexity and Functional Versatility//Trends Cell Biol.-2017.-T.27,#9.-S.658-672
doi: 10.1016/j.tcb.2017.04.005
Chan K.K., Lo R.C. Deregulation of Frizzled Receptors in Hepatocellular Carcinoma//Int J Mol Sci.-2018.-T.19,#1.-S.313
doi: 10.3390/ijms19010313
D’Assoro A.B., Leon-Ferre R., Braune E.-B., Lendahl, U. Roles of Notch Signaling in the Tumor Microenvironment//Int. J. Mol. Sci.-2022.-T.23.-S.6241
https://doi.org/10.3390/ijms2311624
de Roo J.J.D., Staal F.J.T. Cell Signaling Pathway Reporters in Adult
Hematopoietic Stem Cells//Cells.-2020.-T.9,#10.-S.2264
doi: 10.3390/cells9102264
Derynck R., Budi E.N. Specificity, versatility and control of TGF-β family signaling// Sci Signal.-2019.-T.12,#570.-S.eaav5183
doi: 10.1126/scisignal.aav5183
Dijksterhuis J.P., Petersen J., Schulte G. WNT/Frizzled signalling: receptor–ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3//British Journal of Pharmacology.-2014.-T.171.-S.1195–1209
http://dx.doi.org/10.1111/bph.2014.171.issue-5
Dreesen O., Brivanlou A.N. Signaling Pathways in Cancer and Embryonic Stem Cells//Stem Cell Rev.-2007.-T.3,#1.-S.7-17
doi: 10.1007/s12015-007-0004-8
D'souza V., Miyamoto A., Weinmaster G. The many facets of Notch ligands//Oncogene.-2008.-T.27,#38.-S.5148–5167
doi:10.1038/onc.2008.229
D’souza V., Meloty-Kapella L., Weinmaster G. Canonical and non-canonical Notch ligands//Curr Top Dev Biol.-2010.-T.92.-S.73–129
doi:10.1016/S0070-2153(10)92003-6
Faes S., Dormond O. PI3K and AKT: Unfaithful Partners in Cancer//Int. J. Mol. Sci.-2015.-T.16.-S.21138-21152
doi:10.3390/ijms160921138
Goebel E.J., Hart K.N., McCoy J.C., Thompson T.B. Structural biology of the TGFb family//Experimental Biology and Medicine.-2019.-T.244.-S.1530–1546
doi: 10.1177/1535370219880894
Ghosh E., Kumari P., Jaiman D., Shukla A.K. Methodological advances: the unsung heroes of the GPCR structural revolution//Nat Rev Mol Cell Biol.-2015.-T.16,#2.-S.69-81
doi: 10.1038/nrm3933
Gordon W.R., Arnett K.L., Blacklow S.C. The molecular logic of Notch signaling: a structural and biochemical perspective//J Cell Sci.-2008.-T.121(Pt 19).-S.3109–3119
doi:10.1242/jcs.035683
Gurevich V.V., Gurevich E.V. Arrestin mutations: Some cause diseases, others promise cure//Prog Mol Biol Transl Sci.-2019.-T.161.-S.29–45
doi:10.1016/bs.pmbts.2018.09.004
Gurevich V.V., Gurevich E.V. Biased GPCR signaling: possible mechanisms and inherent limitations//Pharmacol Ther.-2020.-T.211.-S.107540
doi:10.1016/j.pharmthera.2020.107540
Hata A., Chen Y.-G. TGF-b Signaling from Receptors to Smads//Cold Spring Harb Perspect Biol.-2016.-T.8,#9.-S.a022061
doi: 10.1101/cshperspect.a022061
He Y., Sun M.M., Zhang G.G. et al. Targeting PI3K/Akt signal transduction for cancer therapy//Signal Transduct Target Ther.-2021.-T.6,#1.-S.425
doi: 10.1038/s41392-021-00828-5
Hodavance S.Y., Gareri C., Torok R.D. et al. G Protein-Coupled Receptor Biased Agonism//J Cardiovasc Pharmacol.-2016.-T.67,#3.-S.193–202
doi:10.1097/FJC.0000000000000356
Hu H.-H., Chen D.-Q., Wang Y.-N. et al. New insights into TGF-β/Smad signaling in tissue fibrosis//Chem Biol Interact.-2018.-T.292.-S.76-83
doi: 10.1016/j.cbi.2018.07.008
Huang X., Liu G., Guo J., Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes//Int J Biol Sci.-2018.-T.14,#11.-S.1483-1496
doi: 10.7150/ijbs.27173
Katoh M., Katoh M. Precision medicine for human cancers with
Notch signaling dysregulation (Review)//International journal of molecular medicine.-2020.-T.45.-S.279-297
doi: 10.3892/ijmm.2019.4418
Kopan R., Ilagan M.X.G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism//Cell.-2009.-T.137,#2.-S.216–233
doi:10.1016/j.cell.2009.03.045
Latek D., Modzelewska A., Trzaskowski B. et al. G protein-coupled receptors — recent advances//Acta Biochim Pol.-2012.-T.59,#4.-S.515–529
Li R., Elowitz M.V. Communication codes in developmental signaling pathways//Development.-2019.-T.146,#12.-S.dev170977
doi: 10.1242/dev.170977
Li W.X. Canonical and non-canonical JAK–STAT signaling//Trends Cell Biol.-2008.-T.18,#11.-S.545–551
doi:10.1016/j.tcb.2008.08.008
Logan C.Y., Nusse R. The wnt signaling pathway in
development and disease//Annu Rev Cell Dev Biol.-2004.-T.20.-S.781-810
doi: 10.1146/annurev.cellbio.20.010403.113126
Louvi A., Artavanis-Tsakonas S. Notch and disease: A growing field//Semin Cell Dev Biol.-2012.-T.23,#4.-S.473–480
doi:10.1016/j.semcdb.2012.02.005
MacDonald V.T., Tamai K., He H. Wnt/β-catenin signaling: components, mechanisms, and diseases//Dev Cell.-2009.-T.17,#1.-S.9–26 doi:10.1016/j.devcel.2009.06.016
Manning B.D., Toker A. AKT/PKB Signaling: Navigating the Network//Cell.-2017.-T.169,#3.-S.381–405
doi:10.1016/j.cell.2017.04.001
Massagué J., Seoane J., Wotton D. Smad transcription factors//Genes Dev.-2005.-T.19,#23.-S.2783-2810
doi: 10.1101/gad.1350705
Morikawa M., Derynck R., Miyazono K. TGF-b and the TGF-b Family: Context-Dependent Roles in Cell and Tissue Physiology//Cold Spring Harb Perspect Biol.-2016.-T.8,#5.-S.a021873
doi: 10.1101/cshperspect.a021873
Morris R., Kershaw N.J., Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway//Protein Sci.-2018.-T.27,#12.-S.1984-2009
doi: 10.1002/pro.3519
Odoemelam C.S., Percival B., Wallis H. et al. G-Protein coupled receptors: structure and function in drug discovery//RSC Adv.-2020.-T.10.-S.36337-36348
doi: 10.1039/d0ra08003a
Oldham W.M., Hamm H.E. Heterotrimeric G protein activation by G-protein-coupled receptors//Nat Rev Mol Cell Biol.-2008.-T.9,#1.-S.60-71
doi: 10.1038/nrm2299
Pencik J., Pham H.T., Schmoellerl J. et al. JAK-STAT signaling in cancer: From cytokines to non-coding
genome//Cytokine.-2016.-T.87.-S.26-36
doi: 10.1016/j.cyto.2016.06.017
Peterson Y.K., Luttrell L.M. The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling//Pharmacol Rev.-2017.-T.69,#3.-S.256–297
doi: 10.1124/pr.116.013367
Porta S., Paglino S., Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer//Front Oncol.-2014.-T.4.-S.64
doi: 10.3389/fonc.2014.00064
Puigdevall L., Michiels C., Stewardson C., Dumoutier L. JAK/STAT: Why choose a classical or an alternative pathway when you can have both?//J Cell Mol Med.-2022.-T.26,#7.-S.1865-1875
doi: 10.1111/jcmm.17168
Saini N., Sarin A. Spatial regulation and generation of diversity in signaling
pathways//J Biosci.-2021.-T.46.-S.30
doi: 10.1007/s12038-021-00150-w
Salazar J.L.. Yamamoto S. Integration of Drosophila and Human Genetics to understand Notch signaling related diseases//Adv Exp Med Biol.-2018.-T.1066.-S.141–185
doi:10.1007/978-3-319-89512-3_8
Schöneberg T., Schulz A., Biebermann H. et al. Mutant G-protein-coupled receptors as a cause of human diseases Pharmacol Ther.-2004.-T.104,#3.-S.173-206
doi: 10.1016/j.pharmthera.2004.08.008
Schöneberg T., Liebscher I. Mutations in G Protein–Coupled Receptors:
Mechanisms, Pathophysiology and Potential Therapeutic Approachess//Pharmacol Rev.-2021.-T.73.-S.89–119
https://doi.org/10.1124/pharmrev.120.000011
Seyedabadi M., Ghahremani M.H., Albert P.R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential//Pharmacol Ther.-2019.-T.200.-S.148-178
doi: 10.1016/j.pharmthera.2019.05.006
South A.P., Cho R.J., Aster J.C. The Double-Edged Sword of Notch Signaling in Cancer//Semin Cell Dev Biol.-2012.-T.23,#4.-S.458–464
doi:10.1016/j.semcdb.2012.01.017
Tao Y.-X. Inactivating mutations of G protein-coupled receptors and diseases:
Structure-function insights and therapeutic implications//Pharmacol Ther.-2006.-T.111,#3.-S.949-73
doi: 10.1016/j.pharmthera.2006.02.008
Thapa N., Horn H. T., Anderson R.A. Phosphoinositide Spatially Free AKT/PKB Activation to all Membrane Compartments//Adv Biol Regul.-2019.-T.72.-S.1-6
doi:10.1016/j.jbior.2019.04.002
Thompson M.D., Percy M.E., Burnham W.M., Cole D.E. G Protein-Coupled Receptors Disrupted in Human Genetic Disease//Methods Mol Biol.-2008.-T.448.-S.109-137
doi: 10.1007/978-1-59745-205-2_7
Thompson M.D., Hendy G.N., Percy M.E. et al. G Protein-Coupled Receptor Mutations and Human Genetic Disease//Methods Mol Biol.-2014.-T.1175.-S.153-87
doi: 10.1007/978-1-4939-0956-8_8
Tyagi A., Sharma A.K., Damodaran S. A Review on Notch Signaling and Colorectal Cancer//Cells.-2020.-T.9,#6.-S.1549
doi: 10.3390/cells9061549
Ulloa-Aguirre A., Zariñán T.. Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic
Prospects//Int. J. Mol. Sci.-2021.-T.22.-S.12329
https://doi.org/10.3390/ijms222212329
Vera J., Rateitschak K., Lange F. et al. Systems biology of JAK-STAT signalling in human malignancies//Prog Biophys Mol Biol.-2011.-T.106,#2.-S.426-34
doi: 10.1016/j.pbiomolbio.2011.06.013
Verrecchia F, Mauviel A. Transforming Growth Factor-b Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and
RegulationJ Invest Dermatol.-2002.-T.118,#2.-S.211-215
doi: 10.1046/j.1523-1747.2002.01641.x
Wang M.M. Notch signaling and Notch signaling modifiers//Int J Biochem Cell Biol.-2011.-T.43,#11.-S.1550–1562
doi:10.1016/j.biocel.2011.08.005
Willert K., Nusse R. Wnt Proteins//Cold Spring Harb Perspect Biol.-2012.-T.4,#9.-S.a007864
doi: 10.1101/cshperspect.a007864
Wootten D., Christopoulos A., Marti-Solano M. et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors//Nat Rev Mol Cell Biol.-2018.-T.19,#10.-S.638-653
doi: 10.1038/s41580-018-0049-3
Xie Y., Shi X., Sheng K. et al. PI3K/Akt signaling transduction pathway,
erythropoiesis and glycolysis in hypoxia (Review)//Molecular medicine reports.-2019.-T.19.-S.783-791
doi: 10.3892/mmr.2018.9713
Zalewska M., Siara M., Sajewicz W. G Protein-coupled receptors: abnormalities in signal transmission, disease states and pharmacotherapy//Acta Poloniae Pharmaceutica - Drug Research.-2014.-T.71,#2.-S.229-243
Zhang Y.E. Mechanistic insight into contextual TGF-β signaling//Curr Opin Cell Biol.-2018.-T.51.-S.1–7
doi:10.1016/j.ceb.2017.10.001
Zhang Z., Yao L., Yang J. et al. PI3K/Akt and HIF 1 signaling pathway
in hypoxia ischemia (Review)//Molecular medicine reports.-2018.-T.18.-S.3547-3554
doi: 10.3892/mmr.2018.9375
Zhou B., Lin W., Long Y. et al. Notch signaling pathway: architecture, disease, and therapeutics//Signal Transduct Target Ther.-2022.-T.7,#1.-S.95
doi: 10.1038/s41392-022-00934-y
Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334
Martincorena, I.; Fowler, J.C.; Wabik, A.; Lawson, A.R.J.; Abascal, F.; Hall, M.W.J.; Cagan, A.; Murai, K.; Mahbubani, K.; Stratton, M.R.; et al. Somatic mutant clones colonize the human esophagus with age. Science 2018, 362, 911–917.
Yokoyama, A.; Kakiuchi, N.; Yoshizato, T.; Nannya, Y.; Suzuki, H.; Takeuchi, Y.; Shiozawa, Y.; Sato, Y.; Aoki, K.; Kim, S.K.; et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 2019, 565, 312–317.
Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015, 348, 880–886.
Matsuno, Y.; Atsumi, Y.; Shimizu, A.; Katayama, K.; Fujimori, H.; Hyodo, M.; Minakawa, Y.; Nakatsu, Y.; Kaneko, S.; Hamamoto, R.; et al. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat. Commun. 2019, 10, 3925.
Vishwakarma R., McManus K.J. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes Cancers 2020, 12, 824; doi:10.3390/cancers12040824
Fidler, I.J. Commentary on “Tumor Heterogeneity and the Biology of Cancer Invasion and Metastasis”. Cancer Res. 2016, 76, 3441–3442.
Lee, J.K.; Choi, Y.L.; Kwon, M.; Park, P.J. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. Annu. Rev. Pathol. 2016, 11, 283–312.
Petrova, Y.I.; Schecterson, L.; Gumbiner, B.M. Roles for E-cadherin cell surface regulation in cancer. Mol. Biol. Cell 2016, 27, 3233–3244.
Pastushenko, I.; Blanpain, C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019, 29, 212–226.
Biron-Shental, T.; Liberman, M.; Sharvit, M.; Sukenik-Halevy, R.; Amiel, A. Amniocytes from aneuploidy embryos have enhanced random aneuploidy and signs of senescence-can these findings be related to medical problems? Gene 2015, 562, 232–235.
Nicholson, J.M.; Macedo, J.C.; Mattingly, A.J.; Wangsa, D.; Camps, J.; Lima, V.; Gomes, A.M.; Doria, S.; Ried, T.; Logarinho, E.; et al. Chromosome mis-segregation and cytokinesis failure in trisomic human cells. Elife 2015, 4
Zhu, J.; Tsai, H.J.; Gordon, M.R.; Li, R. Cellular Stress Associated with Aneuploidy. Dev. Cell 2018, 44, 420–431.
Yoshioka K.-i., Matsuno Y., Hyodo M., Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes Cancers 2019, 11, 1643; doi:10.3390/cancers11111643
Vysockaja I.V. , Letjagin V.P. , Shabanov M.A. , Kirsanov V.Ju. , Kim E.A. , Levkina N.V. Aktual'nye voprosy kancerogeneza Klinicheskaja onkogematologija. 2019;12(1):101–6
Anichkov N.M., Plotnikova N.A. O morfologii i klassifikacii opuholepodobnyh i rakovyh porazhenij predstatel'noj zhelezy. Arhiv patologii. 2001;63(5):44–50. [Anichkov NM, Plotnikova NA.On the morphology and classifi cation of prostate tumors and cancerous lesions. Arkhiv patologii. 2001;63(5):44–50. (In Russ)]
Issledovanija raka: beg s prepjatstvijami. Biohimija. 2014;79(5):493–500. [Likhtenshtein AV. Cancer research: a hurdle race. Biokhimiya. 2014;79(5):493– 500. (In Russ)]
Kushlinskij N.E., Nemcova M.V. Molekuljarno-biologicheskie harakteristiki zlokachestvennyh novoobrazovanij. Vestnik RAMN. 2014;69(1–2):5–15. doi: 10.15690/vramn.v69i1-2.934. [Kushlinskii NE, Nemtsova MV. Molecular biological characteristics of cancer. Annals of the Russian academy of medical sciences. 2014;69(1–2):5–15. doi: 10.15690/vramn.v69i1-2.934 . (In Russ)]
Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7(11):834–46. doi: 10.1038/nrc2256. 22. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222(1):1–15. doi: 10.1002/path.2727.
Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901. doi: 10.1016/j. devcel.2010.05.012.
Anichkov N.M. Biologicheskie i kliniko-morfologicheskie aspekty uchenija o metastazirovanii zlokachestvennyh opuholej. Medicinskij akademicheskij zhurnal. 2003;1:3–13. [Anichkov NM. Biological and morphological aspects of the doctrine of metastasis of malignant tumors. Meditsinskii akademicheskii zhurnal. 2003;1:3–13. (In Russ)]
Fernandez A, Esteller M. Viral epigenomes in human tumorigenesis. Oncogene. 2010;29(10):1405–20. doi: 10.1038/onc.2009.517
Junttila MR, Evan GL. p53 – a Jack of all trades but master of none. Nat Rev Cancer. 2009;9(11);821–9. doi: 10.1038/nrc2728.
Pleshkan V.V., Alekseenko I.V., Zinov'eva M.V. i dr. Promotory so specificheskoj aktivnost'ju v rakovyh kletkah pri gennoj terapii melanomy. Acta Naturae. 2011;3(2):14–23. [Pleshkan VV, Alekseenko IV, Zinov’eva MV. Promoters with cancer cell-specifi c activity for melanoma gene therapy. Acta Naturae. 2011;3(2):14–23. (In Russ)]
Kovaleva O.V., Nazarova O.R., Matveev V.B., Grachev A.N. Molekuljarnye osobennosti pochechno-kletochnogo raka: rannjaja diagnostika i perspektivy terapii. Uspehi molekuljarnoj onkologii. 2014;1(2):36–43. [Kovaleva OV, Nazarova OR, Matveev VB, Grachev AN. Molecular features of renal cell carcinoma: early diagnosis and perspectives for therapy. Uspekhi molekulyarnoi onkologii. 2014;1(2):36–43. (In Russ)]
Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9. doi: 10.1038/nature10275.
Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48. doi: 10.1101/gad.1756509.
Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711. doi: 10.1016/j. devcel.2010.10.005
Maev I.V., Zajrat'janc O.V., Kucherjavyj Ju.A. Kishechnaja metaplazija slizistoj obolochki zheludka v praktike gastrojenterologa: sovremennyj vzgljad na problemu. Ross. zhurnal gastrojenterologii, gepatologii, koloproktologii. 2006; 4: 38—47.
Correa M., Piazuelo B. The gastric precancerous cascade. J. Dig. Dis. 2012; 13(1): 2—9
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 Mar 4;144(5):646-74 Abstract available at http://www.ncbi.nlm.nih.gov/pubmed/21376230.
Yoshioka K.-i., Matsuno Y., Hyodo M., Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes Cancers 2019, 11, 1643; doi:10.3390/cancers11111643
Lyzhko N.A. Molekuljarno-geneticheskie mehanizmy iniciacii, promocii i progressii opuholej Rossijskij bioterapevticheskij zhurnal 4'2017 TOm 16 . 7-17
Teshelova V.T. Kancerogenez i aktivacija perifericheskih limfocitov. Uspehi sovremennoj biologii. 2003;123(5):495–505. [Teshelova VT. Carcinogenesis and activation of peripheral lymphocytes. Uspekhi sovremennoi biologii. 2003;123(5):495–505. (In Russ)]
Bindea G, Mlecnik B, Fridman WH. Natural immunity to cancer in humans. Curr Opin Immunol. 2010;22(2):215–22. doi: 10.1016/j.coi.2010.02.006.
Grivennikov S, Greten FR, Karin M. Immunity, infl ammation and cancer. Cell. 2010;140(6):883–99. doi: 10.1016/j.cell.2010.01.025. 45. Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117. doi: 10.1016/S0065-230X(10)07003-X
Chao Ma et.al. Ma C.,VioJ.W., Kuang A.R., Huang K. Tang G.S.[The effects of Antisense Oligonucleotides bcl-2/bcl-x1 and bcl-2 on proliferation and Apoptosis of Breast Cancer Cells]. Sishuan Da Xue Xue Bio Yi Xue Ban.:2009 40(5):780-783.
Chopra A. [99mTc]Human telomerase reverse-transcriptase antisense mRNA oligonucleotide. Molecular Imaging and Contrast Agent Database (MICAD): National Center for Biotechnology Information (US); 2008
Kurreck J. Antisense technologies. Improvement through novel chemical modifications. European Journal of Biochemistry. 2003;270(8):1628‐1644..
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Research. 2016;44(14):6518-48.
Linnane E, Davey P, Zhang P, et al. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Research. 2019;47(9):4375‐4392.
Zhou T, Jia X, LiH. et al Neptumar- targeted nano sigol delivery carrier for oligonucleotides; ofaracteristies in vitro and in vivo. International journal of Nanonadicine. 2011:6;1527-1534
Ou X, Tan T, Hel, Li Y, Li S, Kuang A. Antitumar effects of radio iodinated antigense oligonuclide mediated by VIP receptor. Cancer Gene Ther. 2005; 12(3):313-320.
Olie RA, Hafner C, Küttel R, et al. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. The Journal of Investigative Dermatology. 2002;118(3):505‐512.
Xiu B, Chi Y, Liu L, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Moecularl Cancer. 2019;18(1):187.
Nagini S. Breast Cancer: Current Molecular Therapeutic Targets and New Players. Anti-cancer Agents in Medicinal Chemistry. 2017;17(2):152‐163.
Kashyap AS, Thelemann T, Klar R, et al. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity. Journal of Immunotherapy Cancer. 2019;7(1):67.
Sun, Y., Yan, L., Guo, J. et al. Inhibition of SRSF3 by antisense oligonucleotides increases the sensitivity of squamous cell carcinoma of the oral cavity and breast cancer cells to treatment with paclitaxel. Cancer Chemother Pharmacol. 2019;84: 1133–1143.
Smirnova O.V., Borisov V.I. Immunoterapija v lekarstvennom lechenii bol'nyh s metastaticheskim trojnym negativnym rakom molochnoj zhelezy. Onkologija. Zhurnal im. P.A. Gercena. 2018;7(6):60-66.
Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book. 2016;35:298‐308.
Hudler P. Genetic Aspects of Gastric Cancer Instability [Jelektronnyj resurs] // The Scientific World Journal. – 2012. – Vol. 2012. URL: http://www.hindawi.com/journals/ tswj/2012/761909/ (data obrashhenija 31.01.2015)].
Buffart T.E., van Grieken N.C., Tijssen M., Coffa J., Ylstra B., Grabsch H.I., van de Velde C.J., Carvalho B., Meijer G.A. High resolution analysis of DNA copy-number aberrations of chromosomes 8, 13, and 20 in gastric cancers // Virchows Arch. 2009. Vol. 455. P. 213–223. doi: 10.1007/s00428-009-0814-y
Bamias A.T., Bai M.C., Agnantis N.J., Michael M.C., Alamanos Y.P., Stefanaki S.V., Razi E.D., Skarlos D.V., Kappas A.M., Pavlidis N.A. Prognostic significance of the deleted in colorectal cancer gene protein expression in high-risk resected gastric carcinoma // Cancer Invest. 2003. Vol. 21. P. 333–340
Simpson A.J., Caballero O.L., Pena S.D. Microsatellite instability as a tool for the classification of gastric cancer // Trends Mol. Med. 2001. Vol. 7. P. 76–80
Iacopetta B.J., Soong R., House A.K., Hamelin R. Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-beta type II receptor, IGFII receptor, and BAX genes // J. Pathol. 1999. Vol. 187. P. 428–432].
Corso G., Pedrazzani C., Marrelli D., Pascale V., Pinto E., Roviello F. Correlation of microsatellite instability at multiple loci with long-term survival in advanced gastric carcinoma // Arch. Surg. 2009. Vol. 144. P. 722–727. doi: 10.1001/archsurg.2009.42
Ushijima T., Sasako M. Focus on gastric cancer // Cancer Cell. 2004. Vol. 5. P. 121–125
Yu J., Cheng Y.Y., Tao Q., Lam C.N., Geng H., Tian L.W., Wong Y.P., Tong J.H., Ying J.M., Jin H., To K.F., Chan F.K., Sung J.J. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer // Gastroenterology. 2009. Vol. 136. P. 640–651. doi: 10.1053/j.gastro.2008.10.050
Otsubo T., Akiyama Y., Yanagihara K., Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cellcycle arrest and apoptosis // Br. J. Cancer. 2008. Vol. 98. P. 824–831. doi: 10.1038/sj.bjc.6604193
Leung W.K., To K.F., Chu E.S., Chan M.W., Bai A.H., Ng E.K., Chan F.K., Sung J.J. Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer // Br. J. Cancer. 2005. Vol. 92. P. 2190–2194
Buffart T.E., Overmeer R.M., Steenbergen R.D., Tijssen M., van Grieken N.C., Snijders P.J., Grabsch H.I., van de Velde C.J., Carvalho B., Meijer G.A. MAL promoter hypermethylation as a novel prognostic marker in gastric cancer // Br. J. Cancer. 2008. Vol. 99. P. 1802–1807. doi: 10.1038/ sj.bjc.6604777
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sergey Dolomatov, Elizaveta Ageeva, Walery Zukow
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 586
Number of citations: 0