Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Molecular biology of the cell
  • Home
  • /
  • Molecular biology of the cell
  1. Home /
  2. Archives /
  3. Vol. 12 No. 8 (2022) /
  4. Review Articles

Molecular biology of the cell

Authors

  • Sergey Dolomatov Crimean Federal University
  • Elizaveta Ageeva Crimean Federal University
  • Walery Zukow Nicolaus Copernicus University in Torun, Torun

DOI:

https://doi.org/10.12775/JEHS.2022.12.08.074

Keywords

molecular biology, cell, epigenetics, transcription factors, cell signaling pathways, tumor molecular biology

Abstract

The book is intended for students studying medical and biological specialties.

 

 

CHAPTER I. EPIGENETICS

INTRODUCTION

The science of epigenetics looks at the mechanisms of molecular modifications of histones and DNA that can regulate gene activity without affecting the nucleotide sequences in the DNA molecule. Recognized epigenetic regulators are DNA methylation, post-translational modifications of histones, and non-coding RNAs (nkRNAs). One of the most important differences between eukaryotic cells and prokaryotes is the presence of a complex nucleo-protein chromatin complex in eukaryotes. It is in this form that the DNA molecule is stored in our cells. On the one hand, the complex structural organization of chromatin provides a compact arrangement of DNA in the cell nucleus. On the other hand, chromatin is directly involved in the process of regulating gene expression. At the same time, the nucleosome depicted in Fig. 1 (a structural and functional unit of chromatin) is considered as a key component in the processes of regulating gene expression.

 

The nucleus of the nucleosome is 8 histone proteins (octamers). The nucleus of the nucleosome consists of two copies of each of the histone proteins H2A, H2B, H3 and H4. The DNA chain, which includes 147 nucleotides, folds 1.65 times around the octamer of histones. The nucleosomes are arranged as a linear array along the DNA molecule in the form of "beads on a string". The linker section of DNA connecting adjacent nucleosomes (transcriptionally inactive) is sealed with H1-histone protein. The length of the linker section is 30 nm. Moreover, the site of the beginning of transcription is usually located inside the nucleosome. Consequently, the nucleosome serves as a gene repressor, preventing the initiation of transcription. That is, chromatin provides a total repression of genes. In contrast, transcription becomes possible as a result of chromatin remodeling factors that enable the "dismantling" of nucleosomes or otherwise alter their structure and organization. Thus, the repression (inactivation) of genes begins with wrapping the DNA molecule around the histones in the nucleosome, and the liberation of genes from repression (activation) involves freeing DNA from binding to histone proteins and unfolding DNA by chromatin remodeling factors (Lorch Y., Kornberg R. D., 2017). Thanks to this mechanism, selective expression of only those genes that are needed at a given time by the cell or tissue is possible. It should be emphasized that nucleosome repression extends not only to transcription, but also to most other biological processes associated with the DNA molecule, such as replication, mitotic division, repair of double-strand breaks, and maintenance of telomeres. Thus, epigenetic mechanisms control various physiological and pathological processes by regulating the expression of the corresponding genes by changing the availability of epigenetic control systems to chromatin.

The scope of application of epigenetic research methods is rapidly expanding. Currently, we are witnessing the active introduction of epigenetic approaches in the field of practical medicine aimed at diagnosing and treating dangerous human diseases.

 

 

 

 

 

 

 

 

CHAPTER II. TRANSCRIPTION FACTORS

INTRODUCTION

For the first time, the existence of transcription factors was revealed on the basis of a discovery that made it possible to establish in vitro purified RNA polymerase-II can initiate transcription on the DNA template in the presence of a cell extract (Weil P.  A. et al., 1979). Further research aimed at the fractionation and identification of the general transcription factors (GTF) required to initiate transcription in vitro has identified similar factors in rats, Drosophila, and yeast and substantiated the assumption that GTFs are indeed "common" factors necessary for the expression of genes transcribed by RNA polymerase II.  is highly conserved in a number of eukaryotic organisms (Matsui T.  et al., 1980). We only mention RNA polymerase II because only this type of enzyme has the ability to synthesize mRNA. Whereas RNA polymerase I is responsible for the synthesis of pro-rRNA, and RNA polymerase III is responsible for the synthesis of tRNA and other non-coding cell RNAs. 

Meanwhile, the regulation of transcription in eukaryotes is quite complex, since it depends on chromatin remodeling complexes (Burns L. G., Peterson C. L., 1997) and covalent modification of histone proteins (Natsume-Kitatani Y., Mamitsuka H., 2016). In transcription initiation, the immediate target of GTF is a well-defined promo zone of a structural gene.  In the structure of the promotra of eukaryotes, the main elements and regulatory elements can be distinguished. The main elements of the promotra (bark promoter, see Fig. 2.1) can be attributed to the site for assembling the transcription initiation complex (PIC), including the TATA sequence located above from the transcription start site (TSS ), and an initiating sequence (Inr) covering the start site. Promoters may include a TATA unit, an initiator sequence (Inr), or both (Hampsey M., 1998).  A third major element, the downstream promoter element (DPE), was originally described in Drosophila and is located about 30 p.p. below TSS. The DPE promoter element appears to function in conjunction with the Inr element as a binding site for the transcription factor TFIID on non-TATA promoters.

 

According to current research, the cellular (main) promoters of multicellular organisms that control the initiation of transcription by RNA polymerase II may contain short sequences of nucleotides called cow promoter elements (motifs) (e.g., the TATA block, the initiator (Inr), and the lower element of the cow promoter (DPE)) that recruit RNA polymerase II through a common transcription initiation mechanism (Dreos R.  et al., 2021). The authors report that the classes of Promoters of Inr+DPE are not only present in the genome of Drosophila and humans and are structurally similar to each other, but may also be common to different species of multicellular organisms.

 

The most studied element of the cow promoter is the TATA box, but the TATA box is found only in about 10-20% of multicellular cortical promoters. Therefore, along with the TATA sequence, it is necessary to name other possible key DNA sequences known as cortical promoter elements, which include: BRE, MTE, TST and DPE sequences. The two BRE (TFIIB recognition element) motifs are located either above (BREu) or below (BREd) elements of the TATA box. It should be emphasized that TBP, TATA box, and BRE demonstrate high levels of conservatism in the range from archaebacteria to humans (Kadonaga J. T., 2012). In doing so, BREu as well as BREd have both positive and negative effects on transcription activity. The downstream core promoter element (DPE) was detected in the analysis of non-TATA gene promoters in Drosophila. The MTE element (motif ten element), which is located directly in front of the DPE, was identified as an overrepresented sequence of a cow promoter called "motif 10" and then discovered,  that it is a functional element of a cow promoter. The MTE and DPE motifs exhibit high conservatism in the range from Drosophila to humans, and both motifs appear to be directly recognized by the subunits of the main transcription factor TFIID, TAF proteins that resemble histone proteins in structure. In turn, the TCT sequence regulates the transcription of ribosomal protein genes in Drosophila and humans. Although there are no universal cortical promoter elements that are present in all promoters, the concept of a cow promoter of nuclear RNA polymerase II can be defined as a minimum stretch of DNA that is sufficient to accurately initiate transcription by RNA polymerase II (Kadonaga J. T., 2012;  Haberle V., Stark A., 2018). It should be noted that the results of modern research will constantly supplement the list of all new components of the cow promoter, for example, DNA-replicatedrelated element (DRE), Ohler 1,6 and 7 motifs (Danino Y. M. et al., 2015;  Haberle V., Stark A., 2018). According to the authors, the bark promoter may be transformed in the course of evolution. Due to this, gene expression levels can be modulated by the composition of cow promoter elements. Such modulation is directly achieved through the emergence of combinations of new elements of the cow promoter, as a result of which an additional level of transcription regulation is realized.

To summarize the above facts, transcription is usually initiated at a specific position, the Transcription Initiation Site (TSS), at the 5' end of the gene. The TSS site is embedded in a bark promoter, which is a short sequence spanning 50 base pairs above and 50 below TSS. The cortical promoter serves as a binding platform for the components required to initiate transcription, including RNA polymerase II and related common transcription factors (GTFs).

Regulatory elements. The cortical promoter is sufficient to initiate transcription, but such transcription has low basal activity, which can be further activated, generally by more distally arranged regulatory elements called enhancers (discussed below). Enhancers bind regulatory proteins known as transcription factors, recruit transcription cofactors, and can further enhance transcription.

 

 

 

 

 

CHAPTER III. CELL SIGNALING PATHWAYS

INTRODUCTION

In a multicellular organism, the work of each cell is regulated by a large number of signals. These signals can be formed both in the organism itself, reflecting the specific needs of a living organism (metabolic state, stages of development, differentiation, reproduction), and in the form of a reaction to the effects of the external environment. The implementation of each of these signals encompasses all the biological and biochemical processes that lead from the cell's perception of the signal to the cell's response. A signal to a cell is something that is recognized by a specific receptor, which in turn can initiate a response to that signal.

 

A receptor is a structure that recognizes a signal, interprets the specificity of a signal, and translates it into the cell in the form of intracellular signaling molecules, a cascade of protein phosphorylation, and other pathways. Thus, signaling to the cell begins as soon as the signaling molecule (ligand) binds to its receptor – a protein with a complementary structure on the transmembrane protein or inside the cell. Growth factors, hormones, cytokines, neurotransmitters, components of the extracellular matrix, etc. The chemical nature of the ligands is diverse, including small molecules such as lipids (prostaglandins, steroid hormones), proteins (for example, peptide hormones, cytokines and chemokines, growth factors)., complex polymers of sugars (for example, β-glucan and zymosan) and their combinations (for example, proteoglycans), nucleic acids, etc. Binding of the ligand  induces conformational changes in the receptor and is then translated into the cell by activating cascades of secondary messengers (kinases, phosphatases, GTPases, ions and small molecules such as cAMP, cGMP, diacylglycerol, etc.). Thus, the message is transmitted from the membrane to the nucleus, where the processes of gene expression, subsequent translation and targeting of the protein to the cell membrane and other organelles are triggered.

There are two main types of receptors – membrane (transmembrane) cell receptors and intracellular receptors. Membrane receptors are located on the plasma membrane and have a separate extracellular domain binding ligand, a transmembrane domain that is hydrophobic in nature, and a cytoplasmic domain. Cell surface receptors can be divided into G-protein-bound receptors, tyrosine kinase-bound receptors, and ionotropic receptors. When the ligand binds, plasma receptors undergo conformational changes in their extracellular domain and activate enzymatic mechanisms associated with the cytoplasmic domain, usually kinases, phosphatases and adapter proteins. These proteins can be covalently bound to the receptor and are capable of producing secondary messengers for subsequent signal transmission. Intracellular receptors can be nuclear receptors (estrogen receptor, glucocorticoid receptor, progesterone receptor, retinoic acid receptor, thyroid hormone receptor, etc.), cytoplasmic receptors or receptors located on the membranes of organelles (mitochondria, endoplasmic reticulum and Golgi apparatus).

Thus, information (ligand) received on the cell surface (e.g., through a membrane receptor) is transformed by specific enzyme systems associated with the plasma membrane receptor and transmitted in the form of secondary messengers to intracellular targets. All of these components form the path of signal transmission to the cell. However, a certain set of effector proteins, enzymes and substrates that implement cellular signals form this signaling pathway (signaling cascade).

 

Recently, however, there has been growing evidence that not only the signaling proteins themselves play an extremely important role in the regulation of cellular signaling, but also the
so-called scaffold proteins ("platform proteins", adaptor proteins), which coordinate the assembly of multicomponent protein complexes. Scaffold proteins can bind several elements of one signaling pathway into a single complex, thereby modulating the efficiency of transmission of the corresponding signal. Binding and  by bringing two or more signaling proteins closer together, these platform proteins direct the flow of information in the cell, activating, coordinating and regulating signaling events in regulatory networks (Skovorodnikova P.A. et al., 2017).

 

According to the literature, several types of scaffold proteins have been described, which cover a wide range of functions. This group of proteins is usually divided into three main categories (Fig. 1): simple proteins that bind two functionally dependent proteins (adaptors), larger multi-domain proteins designed to bind a large number of proteins and regulate their activity by complex mechanisms (scaffold⁄anchoring proteins) and proteins specialized for initiating signaling cascades by localizing certain proteins-components of signaling pathways on the cell membrane (docking proteins) ( Buday L., Tompa P, 2010) The presence of such protein platforms increases the efficiency and selectivity of the signaling pathway, and also allows the formation of regulatory feedback.

e ultimate target of cell signaling pathways are transcription factors that regulate gene expression and ultimately allow the resulting signal to be converted into a change in cellular activity (Brivanlou A. H., Darnell J. E., 2002). Most signaling pathways initiate a cascade of several intracellular signaling molecules that eventually form activation proteins or transcription repressors designed to bind to a specific DNA sequence. Eukaryotic transcription factors, like other proteins, are transcribed in the nucleus, but then their translation takes place in the cytoplasm.

Signal transmission to the cell is a multifactorial system, which is based on nodular complexes of special proteins of signaling cascades. However, none of the signaling pathways in the cells work in isolation. The interaction of signaling mechanisms is inevitable in complex complexes, when the system perceives a combination of stimuli (hormones, cytokines, growth factors and pathogenic ligands), but at the same time preserves the accuracy of signal transmission (Saini N., Sarin A., 2021).

It is well known that a relatively small number of signaling pathways control the development of all cell types in mammals (Brivanlou A. H.,  Darnell J. E., 2002). Combinations and time of action of the main signaling pathways determine decisions about the fate of the cell, including events such as cell differentiation in the process of ontogenesis (Li R., Elowitz M.V., 2019;  de Roo J. J. D., Staal F. J. T., 2020)  and cell malignancy (Dreesen O., Brivanlou A.N., 2007;  Skovorodnikova P.A. et al., 2017). Consider some of the cell signaling pathways that are most important medically important.

 

 

 

CHAPTER IV.  MOLECULAR BIOLOGY OF THE TUMOR: MECHANISMS OF INITIATION, PROMOTION AND PROGRESSION

 

INTRODUCTION

Tumor diseases occupy a leading place, both in terms of morbidity and mortality. However, despite the advances in the study of molecular genetic patterns, many unresolved questions remain. On the one hand, the spectrum of molecular markers makes it possible to diagnose, predict the course, degree of malignancy, rate of tumor progression and predict a possible response to the therapy. On the other hand, those processes that occur at the molecular level are not characterized by stability, they are dynamic and are associated with a change in the genetic profile - the appearance of many clones of tumor cells with a different set of properties. The heterogeneity of tumor diseases simultaneously complicates the strategy of managing such patients, creating the prerequisites for further study of the molecular genetic characteristics of tumor cells.

References

Beylerli O.A., Gareev I.F. Long non-coding RNAs: what are the prospects?//Preventive Medicine 2020, Vol. 23, No. 2, pp. 124-128 https://doi.org/10.17116/profmed202023021124

Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic controlNat. Rev. Genet.-2016.-T.17.-S.487–500

doi: 10.1038/nrg.2016.59

Alló M., Agirre E., Bessonov S. et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells//Proc Natl Acad Sci U S A.-2014 .-T.111,#44.-S.15622-15629

doi: 10.1073/pnas.1416858111

Ameyar-Zazoua M., Rachez C., Souidi M. et al. Argonaute proteins couple chromatin silencing to alternative splicing//Nat Struct Mol Biol.-2012.-T.19,#10.-S.998-1004

doi: 10.1038/nsmb.2373

Bannister A.J, Schneider R., Kouzarides T. Histone methylation: dynamic or static?//Cell.-2002.-T.109.-S.801-806

doi: 10.1016/s0092-8674(02)00798-5

Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications//Cell Research.-2011.-T.21.-S.381-395

doi:10.1038/cr.2011.22

Black J.C., Van Rechem C., Whetstine J.R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact//Mol Cell.-2012.-T.48,#4.-S.491-507

doi:10.1016/j.molcel.2012.11.006

Braconi C., Kogure T., Valeri N et al. (2011). microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer//Oncogene.-2011.-T.30.-C.4750–4756

doi: 10.1038/onc.2011.193

Cabili M.N., Trapnell C., Goff L. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses//Genes Dev.-2011.-T.25,#18.-S.1915-1927

doi: 10.1101/gad.17446611

Catalanotto C., Cogoni C., Zardo G. MicroRNA in Control of Gene Expression:

An Overview of Nuclear Functions//Int J Mol Sci.-2016.-T.17,#10.-S.1712

doi: 10.3390/ijms17101712

Chang B, Chen Y, Zhao Y, Bruick RK. JMJD6 is a histonearginine demethylase// Science.-2007.-T.318.-S.444-447

doi: 10.1126/science.1145801

Chen K, Zhao BS, He C, Nucleic Acid Modifications in Regulation of Gene Expression//Cell Chem Biol.-2016.-T.23,#1.-S.74–85

doi: 10.1016/j.chembiol.2015.11.007

Cheng X., Blumenthal R.M. Coordinated Chromatin Control: Structural and Functional Linkage of DNA and Histone Methylation//Biochemistry.-2010.-T.49,#14.-S.2999–3008

doi:10.1021/bi100213t

Chiyomaru T., Fukuhara S., Saini S. et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells//J Biol Chem.-2014.-T.289,#18.-S.12550-12565

doi: 10.1074/jbc.M113.488593

Derrien T, Johnson R., Bussotti G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression//Genome Res.-2012.-T.22,#9.-S.1775-1789

doi: 10.1101/gr.132159.111

Estève P.O., Chin H.G., Smallwood A. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication//Genes Dev.-2006.-T.20,#22.-S.3089-3103

doi: 10.1101/gad.1463706

Foldes-Papp Z., Konig K., Studier H. et al. Trafficking of mature miRNA-122 into the nucleus of live liver cells//Curr Pharm Biotechnol.-2009.-T.10.-S.569–578

doi: 10.2174/138920109789069332

Gagnon K.T., Li L., Chu Y. et al. RNAi factors are present and active in human cell nuclei. Cell Rep.-2014.-T.6,#1.-S.211-221

doi: 10.1016/j.celrep.2013.12.013

Gao Y., Feng C., Zhang Y. et al. TRmir: A Comprehensive Resource for Human Transcriptional Regulatory Information of MiRNAs//Front. Genet.-2022.-T.13.-S.808950

doi: 10.3389/fgene.2022.808950

Hansen T.B., Wiklund E.D., Bramsen, J.B. et al. miRNA-dependent gene

silencing involving Ago2-mediated cleavage of a circular antisense RNA//EMBO J.-2011.-T.30.-S.4414–4422

doi: 10.1038/emboj.2011.359

Hashimoto H., Vertino P.M., Cheng X. Molecular coupling of DNA methylation and histone methylation//Epigenomics.-2010.-T.2,#5.-S.657–669

doi: 10.2217/epi.10.44

Huang V., Place R.F., Portnoy V. et al. Upregulation of cyclin B1 by miRNA and its implications in cancer//Nucleic Acids Res.-2012.-T.40,#4.-S.1695-1707

doi: 10.1093/nar/gkr93

Hughes A.L., Kelley J.R., Klose R.J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation// Biochim Biophys Acta Gene Regul Mech.-2020.-T.1863,#8.-S.194567

doi: 10.1016/j.bbagrm.2020.194567

Hwang H.W., Wentzel E.A., Mendell J.T A hexanucleotide element directs microRNA nuclear import//Science.-2007.-T.315.-S.97–100

doi: 10.1126/science.1136235

Kopp F., Mendell J.T. Functional classification and experimental dissection of long noncoding RNAs//Cell.-2018.-T.172,#3.-S.393–407

doi:10.1016/j.cell.2018.01.011

Lehnertz B., Ueda Y., Derijck A.A. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin//Curr. Biol.-2003.-T.13.-S.1192–1200

doi: 10.1016/s0960-9822(03)00432-9

Li Y. Modern Epigenetics Methods in Biological Research//Methods.-2021.-T.187.-S.104–113

doi:10.1016/j.ymeth.2020.06.022

Li Y., Chen X., Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications//EMBO Reports.-2021.-T.22.-S.e51803

doi 10.15252/embr.202051803

Liang H., Zhang J., Zen K. et al. Nuclear microRNAs and their unconventional

role in regulating non-coding RNAs//Protein Cell.-2013.-T.4,#5.-S.325–330

doi 10.1007/s13238-013-3001-5

Liu J., Hu J., Corey D.R. Expanding the action of duplex RNAs into the nucleus: Redirecting alternative splicing Nucleic Acids Res//2012.-T.40,#3.-S.1240-1250

doi: 10.1093/nar/gkr780

Liu J., Hu J., Hicks J.A. et al. Modulation of splicing by single-stranded silencing

RNAs//Nucleic Acid Ther.-2015.-T.25,#3.-S.113-120

doi: 10.1089/nat.2014.0527

Lorch Y., Kornberg R.D. Chromatin-remodeling for transcription//Quarterly Reviews of Biophysics.-2017.-T.50.-S.e5

doi:10.1017/S003358351700004X

Majid S., Dar A.A., Saini S. et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer//Cancer.-2010.-T.116,#24.-S.5637-5649

doi: 10.1002/cncr.25488

McCabe M.T., Brandes J.C., Vertino P.M. Cancer DNA Methylation: Molecular Mechanisms and Clinical Implications//Clin Cancer Res.-2009.-T.15,#,12.-S.3927–3937

doi:10.1158/1078-0432.CCR-08-2784

Meissner A., Mikkelsen T.S., Gu H. et al Genome-scale DNA methylation maps of pluripotent and differentiated cells//Nature.-2008.-T.454.-S.766 – 770

doi: 10.1038/nature07107

Melé M., Mattioli K., Mallard W. et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs//Genome Res.-2017.-T.27,#1.-S.27-37

doi: 10.1101/gr.214205.116

Patel A.B., Moore C.M., Greber B.J. et al. Architecture of the chromatin remodeler

RSC and insights into its nucleosome engagement//eLife.-2019.-T.8.-S.e54449 doi: https://doi.org/10.7554/eLife.54449

Place R.F., Li L.C., Pookot D. et al. MicroRNA-373 induces expression of genes with complementary promoter sequences//Proc Natl Acad Sci U S A.-2008.-T.105,#5.-S.1608-1613

doi: 10.1073/pnas.0707594105

Politz J.C., Zhang F., Pederson T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells//Proc Natl Acad Sci U S A.-2006.-T.103,#50.-S.18957-18962

doi: 10.1073/pnas.0609466103

Politz J.C., Hogan E.M., Pederson T. MicroRNAs with a nucleolar location//RNA.-2009.-T.15,#9.-S.1705-1715

doi: 10.1261/rna.1470409

Popadin K., Gutierrez-Arcelus M., Dermitzakis E.T., Antonarakis S.E. Genetic and Epigenetic Regulation of Human lincRNA Gene Expression//Am J Hum Genet.-2013.-T.93,#6.-S.1015-1026

doi: 10.1016/j.ajhg.2013.10.022

Poziello A., Nebbioso A., Stunnenberg H.G. et al. Recent insights into Histone Acetyltransferase-1: biological function and involvement in pathogenesis//EPIGENETICS.-2021.-T.16,#8.-S.838–850

https://doi.org/10.1080/15592294.2020.1827723

Ransohoff J.D., Wei Y., Khavari P.A. The functions and unique features of long intergenic non-coding RNA//Nat Rev Mol Cell Biol.-2018.-T.19,#3.-S.143–157 doi:10.1038/nrm.2017.104

Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs//Annu Rev Biochem.-2012.-T.81.-S.145-166

doi: 10.1146/annurev-biochem-051410-09290

Santos-Rosa H, Kirmizis A, Nelson C, et al. Histone H3 tail clipping regulates gene expression//Nat Struct Mol Biol.-2009.-T.16.-S.17-22

doi: 10.1038/nsmb.1534

Schubeler D., Lorincz M.C., Cimbora D.M. et al. Genomic Targeting of Methylated DNA: Influence of Methylation on Transcription, Replication, Chromatin Structure, and Histone Acetylation//Molecular and cellular biology.-2000.-T.20,#24.-S.9103–9112

doi:https://doi.org/10.1128/MCB.20.24.9103-9112.2000

Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1//Cell.-2004.-T.119.-S.941-953

doi: 10.1016/j.cell.2004.12.012

Smallwood A., Estève P.-O., Pradhan S., Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing//Genes & Dev.-2007.-T.21.-S.1169-1178

doi/10.1101/gad.1536807

Sobel R.E., Cook R.G., Perry C.A. et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4//Proc Natl Acad Sci.-1995.-T.92.-S.1237–1241

doi: 10.1073/pnas.92.4.1237

Spitale R.C., Tsai M.-C., Chang H.Y. RNA templating the epigenome Long noncoding RNAs as molecular scaffolds//Epigenetics.-2011.-T.6,#5.-S.539-543

doi: 10.4161/epi.6.5.15221

Stoll S., Wang C., Qiu H. DNA Methylation and Histone Modification

in HypertensionInt. J. Mol. Sci.-2018.-T.19.-S.1174

doi:10.3390/ijms19041174

Su X., Wellen K.E., Rabinowitz J.D. Metabolic control of methylation and acetylation//Curr Opin Chem Biol.-2016-T.30.-S.52–60

doi:10.1016/j.cbpa.2015.10.030

Tang R., Li L., Zhu D. et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system//Cell Res.-2012.-T.22.-S.504–515

doi: 10.1038/cr.2011.137

Verdone L., Agricola E., Caserta M., Di Mauro E. Histone acetylation in gene regulation//Brief Funct Genomic Proteomic.-2006.-T.5,#3.-S.209-221

doi: 10.1093/bfgp/ell028

Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs//Mol Cell.-. 2011.-T.43,#6.-S.904-914

doi: 10.1016/j.molcel.2011.08.01

Wang S., Talukder A., Cha M. et al. Computational annotation of miRNA transcription start sites//Briefings in Bioinformatics.-2021.-T.22,#1.-S.2021, 380–392

doi: 10.1093/bib/bbz178

Whetstine JR, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases//Cell.-2006.-T.125.-S.467-481

doi: 10.1016/j.cell.2006.03.028

Wilusz J.E., Sunwoo H., Spector D.L. Long noncoding RNAs: functional

surprises from the RNA world//Genes Dev.-2009.-T.23,#13.-S.1494-1504

doi: 10.1101/gad.1800909

Wu S.C., Zhang Y. Role of Protein Methylation and Demethylation in Nuclear Hormone Signaling//Mol Endocrinol.-2009.-T.23,#9.-S.1323–1334

doi: 10.1210/me.2009-0131

Xiao B., Jing C., Kelly G. et al. Specificity and mechanism of the histone

methyltransferase Pr-Set7//Genes and Development.-2005.-T.19.-S.1444–1454

doi/10.1101/gad.1315905

Zhang Y., Fan M., Geng G.et al. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region//Retrovirology.-2014.-T.11.-S.23.

doi: 10.1186/1742-4690-11-23

Zhao Q., Rank G., Tan Y.T. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing//Nat Struct Mol Biol.-2009.-T.16,#3.-S.304–311

doi:10.1038/nsmb.1568

Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns//Development-2007.-T.134.-S.3959–3965

doi.org/10.1242/dev.001131

Zisoulis D.G., Kai Z.S., Chang R.K., Pasquinelli A.E. Autoregulation of microRNA biogenesis by let-7 and Argonaute//Nature.-2012.-T.486.-S.541–544

doi: 10.1038/nature11134

Putljaev E.V., Ibragimov A.N., Lebedeva L.A. i soavt. Struktura i funkcii kompleksa mediator//Biohimija.-2018.-T.83,vyp. 4.-S.577 – 591

Razin S.V., Gavrilov A.A., Ul'janov S.V. Reguljatornye jelementy jeukarioticheskogo genoma, kontrolirujushhie transkripciju//Molekuljarnaja biologija.-2015.-T.49, # 2.-S.212–223

doi: 10.7868/S0026898415020123

Adachi N, Senda T, Horikoshi M (2016) Uncovering ancient transcription systems with a novel evolutionary indicator//Sci Rep.-2016.-T.6,#1.-S.1–12

doi: 10.1038/srep27922

Agrawal R., Heimbruch K.E., Rao S. Genome-Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease//Compr Physiol.-2018.-T.9,#1.-S.439-455

doi: 10.1002/cphy.c180028

Allen B.L., Taatjes D.J. The Mediator complex: a central integrator of transcription//Nat Rev Mol Cell Biol.-2015.-T.16,#3.-S.155–166 doi:10.1038/nrm3951

Aranda-Orgilles B., Saldaña-Meyer R., Wang E. et al. MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control

hematopoiesis//Cell Stem Cell.-2016.-T.19.-S.784–799

doi: 10.1016/j.stem.2016.08.004

Balamotis M.A., Pennella M.A., Stevens J.L. et al. Complexity in transcription control at the activation domain-mediator interface//Sci Signal.-2009.-T.2.-S.ra20

doi: 10.1126/scisignal.1164302

Bhuiyan T., Timmers H.Th.M. Promoter Recognition: Putting TFIID on the Spot// Trends in Cell Biology.-2019.-T.29,#9.-S.752-763

https://doi.org/10.1016/j.tcb.2019.06.004

Burns L. G., Peterson C. L. 1997. Protein complexes for remodeling

chromatin//Biochim. Biophys. Acta.-1997.-T.1350,#2.-S.159–168

doi: 10.1016/s0167-4781(96)00162-5

Carrera I., Janody F., Leeds N. et al. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13//Proc Natl Acad Sci U S A.-2008.-T.105,#18.-S.6644-6649

doi: 10.1073/pnas.0709749105

Clarke P.A., Ortiz-Ruiz M.J., TePoele R. et al. (2016). Assessing the mechanism and therapeutic potential of modulators of the human mediator complex-associated protein kinases//eLife.-2016.-T.5.-S.e20722

doi: 10.7554/eLife.20722

Compe E., Genes C.M., Braun C. et al. TFIIE orchestrates the recruitment of the TFIIH kinase module at promoter before release during transcription// Nat. Commun.-2019.-T.10.-S.2084

doi: 10.1038/s41467-019-10131-1

Conaway R.C., Conaway J.W. Origins and Activity of the Mediator Complex// Semin Cell Dev Biol.-2011.-T.22,#7.-S.729–734

doi: 10.1016/j.semcdb.2011.07.021

Danino Y.M., Even D., Ideses D., Juven-Gershon T. The core promoter: At the heart of gene expression//Biochim Biophys Acta.-2015.-T.1849,#8.-S.1116-1131

doi: 10.1016/j.bbagrm.2015.04.003

Dannappel M.V., Sooraj D., Loh J.J., Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules//Front. Cell Dev. Biol.-2019.-T6.-S.171

doi: 10.3389/fcell.2018.00171

de Martin X., Sodaei R., Santpere G. Mechanisms of Binding Specificity among bHLH Transcription Factors//Int J Mol Sci.-2021.-T.22,#17.-S.9150

doi: 10.3390/ijms22179150

Deng W., Roberts S.G. TFIIB and the regulation of transcription by RNA

polymerase II//Chromosoma.-2007.-T.116.-S.417–429

doi: 10.1007/s00412-007-0113-9

Dergai O., Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes//Trends Genet.-2019.-T.35,#6.-S.457-469

doi: 10.1016/j.tig.2019.04.001

Dimitrova E., Kondo T., Feldmann A. et al. FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment//Elife.-2018.-T.7.-S.e37084

doi: 10.7554/eLife.37084

Dreos R., Sloutskin A., Malachi N. et al. (2021) Computational identification and experimental characterization of preferred downstream positions in human core promoters//PLoS Comput Biol.-2021.-T.17,#8.-S.e1009256

https://doi.org/10.1371/journal.pcbi.1009256

El Khattabi L., Zhao H., Kalchschmidt J. et al. A pliable Mediator acts as a functional rather than an architectural bridge between promoters and enhancers//Cell.-2019.-T.178,#5.-S.1145–1158.e20. doi:10.1016/j.cell.2019.07.011

Farrelly, L.A., Thompson R.E., Zhao S. et al. (2019) Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3//Nature.-2019.-T.567,#7749.-S. 535–539

doi: 10.1038/s41586-019-1024-7

Flanagan P.M., Kelleher R.J., Sayre M.H. et al. A mediator required for activation of RNA polymerase II transcription in vitro//Nature.-1991.-T.350,#6317.-S.436-438

doi: 10.1038/350436a0

Fondell J.D., Ge N., Roeder R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex//Proc Natl Acad Sci U S A.-1996.-T.93,#16.-S.8329-8333

doi: 10.1073/pnas.93.16.8329

Gao W.-W., Xiao R.-Q., Zhang W.-J. et al. JMJD6 Licenses ERα-Dependent Enhancer and Coding Gene Activation by Modulating the Recruitment of the CARM1/MED12 Co-activator Complex//Mol Cell.-2018.-T.70,#2.-S.340-357

doi: 10.1016/j.molcel.2018.03.006

Grueter C.E., van Rooij E., Johnson B.A. et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13//Cell.-2012.-T.149.-S.671–683

doi: 10.1016/j.cell.2012.03.029

Haberle V., Stark A. Eukaryotic core promoters and the functional basis of

transcription initiation//Nat Rev Mol Cell Biol.-2018.-T.19,#10.-S.621–637 doi:10.1038/s41580-018-0028-8

Hampsey M. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery//Microbiology and molecular biology reviews.-1998.-T.62,#2.-S.465–503

doi: 10.1128/mmbr.62.2.465-503.1998

Hoeppner S., Baumli S., Cramer P. Structure of the Mediator Subunit Cyclin C and its Implications for CDK8 Function//J. Mol. Biol.-2005.-T.350.-S.833–842

doi:10.1016/j.jmb.2005.05.041

Huang S., Hölzel M., Knijnenburg T. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling//Cell.-2012.-T.151,#5.-S.937-950

doi: 10.1016/j.cell.2012.10.035

Ibragimov A.N., Bylino O.V., Shidlovskii Y.V. Molecular Basis of the Function of

Transcriptional Enhancers//Cells.-2020.-T.9,#7.-S.1620

doi: 10.3390/cells9071620

Jawhari A., Uhring M., De Carlo S. et al. Structure and oligomeric state of human transcription factor TFIIE//EMBO Rep.-2006.-T.7,#5.-S.500-505

doi: 10.1038/sj.embor.7400663

Kadonaga J.T. Perspectives on the RNA Polymerase II Core Promoter//Wiley Interdiscip Rev Dev Biol.-2012.-T.1,#1.-S.40–51

doi:10.1002/wdev.21

Kang S.W., Kuzuhara T., Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68//Genes Cells.-2000.-T.5,#4.-S.251-263

doi: 10.1046/j.1365-2443.2000.00323.x

Knuesel M.T., Meyer K.D., Bernecky C., Taatjes D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function//Genes Dev.- 2009.-T.23,#4.-S.439-451

doi: 10.1101/gad.1767009

Krishnamurthy S., Hampsey M. Eukaryotic transcription initiation//Curr Biol.-2009.-T.19,#4.-S.R153-R156

doi: 10.1016/j.cub.2008.11.052

Krivega I., Dean A. Enhancer and promoter interactions — long distance calls//Curr Opin Genet Dev.-2012.-T.22,#2.-S.79–85

doi: 10.1016/j.gde.2011.11.001

Lai F., Orom U.A., Cesaroni M. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription//Nature.-2013.-T.494,#7438.-S.497-501

doi: 10.1038/nature11884

Larroux C., Luke G.N., Koopman P. et al. Genesis and Expansion of Metazoan Transcription Factor Gene Classes//Mol. Biol. Evol.-2008.-T.25,#5.-S.980–996

doi:10.1093/molbev/msn047

Lee T.I., Young RA. Transcriptional Regulation and its Misregulation in Disease//Cell. 2013.-T.152,#6.-S.1237–1251

doi:10.1016/j.cell.2013.02.014

Lemon B., Tjian R. Orchestrated response: a symphony of transcription factors for gene control//Genes Dev.-2000.-T.14,#20.-S.2551-2569

doi: 10.1101/gad.831000

Leurent C., Sanders S., Ruhlmann C. et al. Mapping histone fold TAFs within yeast TFIID//EMBO Journal.-2002.-T.21,#13.-S.3424-3433

doi: 10.1093/emboj/cdf342

Luse D.S. Rethinking the role of TFIIF in transcript initiation by RNA polymerase II//Transcription.-2012.-T.3,#4.-S.156-159

doi: 10.4161/trns.20725

Luse D.S. The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled?//Transcription.-2014.-T.5,#1.-S.e27050

doi: 10.4161/trns.27050

Luyties O., Taatjes D.J. The Mediator kinase module: an interface between cell signaling and transcription//Trends Biochem Sci.-2022.-T.47,#4.-S.314–327

doi:10.1016/j.tibs.2022.01.002

Malecova B., Gross P., Boyer-Guittaut M. et al. The Initiator Core Promoter Element Antagonizes Repression of TATA-directed Transcription by Negative Cofactor NC2//Journal of biological chemistry.-2007.-T.282,#34.-S.24767–24776

doi: 10.1074/jbc.M702776200

Malik S., Roeder R.G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation//Nat Rev Genet.-2010.-T.11,#11.-S.761–772

doi:10.1038/nrg2901

Matsui T., Segall J., Weil P. A., Roeder R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II//J. Biol. Chem.-1980.-T.255.-S.11992–11996

PMID: 7440580

Miao Y.L., Gambini A., Zhang Y. et al. Mediator complex component MED13 regulates zygotic genome activation and is required for postimplantation development in the mouse//Biol. Reprod.-2018.-T.98.-S.449–464

doi: 10.1093/biolre/ioy004

Natsume-Kitatani Y., Mamitsuka H. Classification of Promoters Based on the

Combination of Core Promoter Elements Exhibits Different Histone Modification Patterns//PLoS ONE.-2016.-T.11,#3.-S. e0151917 doi:10.1371/journal.pone.0151917

Nogales E., Louder R.K., He Y. Structural Insights into the Eukaryotic Transcription Initiation Machinery//Annu Rev Biophys.-2017.-T.46.-S.59-83

doi: 10.1146/annurev-biophys-070816-033751

O’Brien M.J., Ansari A. Beyond the canonical role of TFIIB in eukaryotic transcription//Current Genetics.-2022.-T.68.-S.61–67

https://doi.org/10.1007/s00294-021-01223-x

Ong C.-T., Corces V.G. Enhancer function: new insights into the regulation of tissuespecific gene expression//Nat Rev Genet.-2011.-T.12,#4.-S.283–293 doi:10.1038/nrg2957

Osman S., Mohammad E., Lidschreiber M. et al. The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II//J. Biol. Chem.-2021.-T.296.-S.100734

https://doi.org/10.1016/j.jbc.2021.100734

Patel A.B., Louder R.K., Greber B.J. et al. Structure of human TFIID and mechanism of TBP loading onto promoter DNA//Science.-2018.-T.362,#6421.-S.eaau8872

doi: 10.1126/science.aau8872

Phan T., Maity P., Ludwig C. et al. Nucleolar TFIIE plays a role in ribosomal biogenesis and performance//Nucleic Acids Res.-2021 Nov 8;49(19):11197-11210.

doi: 10.1093/nar/gkab866

Poss Z.S., Ebmeier C.C., Taatjes D.J. The Mediator complex and transcription regulation//Crit Rev Biochem Mol Biol.-2013.-T.48,#6.-S.575–608

doi: 10.3109/10409238.2013.840259

Rocha P.P., Scholze M., Bleiss W., Schrewe H. Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling//Development.-2010.-T.137,#16.-S.2723-2731

doi: 10.1242/dev.053660

Roeder R.G. 50+ years of eukaryotic transcription: an expanding universe of

factors and mechanisms//Nat Struct Mol Biol.-2019.-T.26,#9.-S.783–791 doi:10.1038/s41594-019-0287-x

Sartorelli V., Lauberth S.M. Enhancer RNAs are an important regulatory layer of the epigenome//Nat Struct Mol Biol.-2020.-T.27,#6.-S.521–528

doi:10.1038/s41594-020-0446-0

Soutoglou E., Demény M.A., Scheer E. et al. The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners// Mol Cell Biol.-2005.-T.25,#10.-S.4092-4104

doi: 10.1128/MCB.25.10.4092-4104.2005

Srivastava S., Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases//J Cell Physiol.-2021.-T.236,#5.-S.3163-3177

doi: 10.1002/jcp.30099

Struhl K. Yeast transcriptional regulatory mechanisms//Annu. Rev.Genetics.-1995.-T.29.-S.651-674

Takahashi H., Parmely T.J., Sato S. et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors//Cell.-2011.-T.146,#1.-S.92-104

doi: 10.1016/j.cell.2011.06.005

Thompson C.M., Koleske A.J., Chao D.M., Young R.A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast//Cell.-1993.-T.73,#7.-S.1361-1375

doi: 10.1016/0092-8674(93)90362-t

Tobias I.C., Abatti L.E., Moorthy S.D. et al. Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale//Genome.-2021.-T.64,#4.-S.426-448

doi: 10.1139/gen-2020-0104

Torres-Machorro, A.L. Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix–Loop–Helix Transcription Factors//Int. J. Mol. Sci.-2021.-T.22.-S.12855

https://doi.org/10.3390/ijms222312855

Tsai K.L., Tomomori-Sato C., Sato S. et al. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex//Cell.-2014.-T.157,#6.-S.1430–1444

doi: 10.1016/j.cell.2014.05.015

Wang R., Tang Q. Current Advances on the Important Roles of Enhancer RNAs in Molecular Pathways of Cancer// Int. J. Mol. Sci.-2021.-T.22.-S.5640 https://doi.org/10.3390/ijms22115640

Wang Y., Roberts S. New insights into the role of TFIIB in transcription initiation//Transcription.-2010.-T.1,#3.-S.126–129

doi: 10.4161/trns.1.3.12900

Weil P. A., Luse D. S., Segall J., Roeder R. G. Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA//Cell.-1979.-T.18.-S.469–484

doi: 10.1016/0092-8674(79)90065-5

Weirauch M.T., Hughes T.R. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution//Subcell Biochem.-2011.-T.52.-S.25-73.

doi: 10.1007/978-90-481-9069-0_3

Whyte W.A., Orlando D.A., Hnisz D. et al. Master Transcription Factors and Mediator Establish SuperEnhancers at Key Cell Identity Genes//Cell.-2013.-T.153,#2.-S.307–319

doi:10.1016/j.cell.2013.03.035

Zhao M., Yang X., Fu Y. et al. Mediator MED15 modulates transforming growth factor beta (TGFβ)/Smad signaling and breast cancer cell metastasis//J Mol Cell Biol.-2013.-T.5,#1.-S.57-60

doi: 10.1093/jmcb/mjs054

Vasilec Ju.D., Arnockaja N.E., Kudrjavcev I.A., Shevchenko V.E. Wnt-signal'nyj kaskad v patogeneze mul'tiformnoj glioblastomy//Uspehi molekuljarnoj onkologii.-2018.-T.5,#4.-S.94–103

doi: 10.17650/2313-805X-2018-5-4-94-103

Domninskij D.A. Mehanizmy realizacii signal'noj transdukcii//Onkogematologija.-2011.-T.6,#1.-S.76-84 https://doi.org/10.17650/1818-8346-2011-6-1-76-84

Isaeva A.V., Zima A.P., Shabalova I.P i soavt. β-Katenin: struktura, funkcii i rol' v opuholevoj transformacii jepitelial'nyh kletok//Vestnik RAMN.-2015.-T.70,#4.-S.475–483

doi: 10.15690/vramn.v70.i4.1415

Kulikova K.V., Kibardin A.V., Gnuchev N.V. i soavt. Signal'nyj put' wnt i ego znachenie dlja razvitija melanomy//Sovremennye tehnologii v medicine.-2012.-#3.-S.107-112

Katanaev V.L. Vnutrikletochnaja peredacha signala ot wnt-ligandov i soprjazhennyh s g-belkami frizzled-receptorov//Biohimija.-2010.-T.75,vyp.12.-S.1642 – 1650

Skovorodnikova P.A. i soavt. Skaffold-belki semejstva IQGAP – mul'tifunkcional'nye reguljatory vnutrikletochnoj signalizacii i opuholevoj transformacii//Uspehi molekuljarnoj onkologii.-2017.-T.4,#2.-S.35-45

doi: 10.17650/2313-805X-2017-4-2-36-45

Aoki M., Fujishita T. Oncogenic Roles of the PI3K/AKT/mTOR

Axis//Curr Top Microbiol Immunol.-2017.-T.407.-S.153-189

doi: 10.1007/82_2017_6

Bar-Shavit R., Maoz M., Kancharla A. et al. G Protein-Coupled Receptors in Cancer//Int J Mol Sci.-2016.-T.17,#8.-S.1320

doi: 10.3390/ijms17081320

Bray S.J. Notch Signalling in context//Nat Rev Mol Cell Biol.-2016.-T.17,#11.-S.722-735

doi: 10.1038/nrm.2016.94

Brivanlou A.H., Darnell J.E. Signal transduction and the control of gene expression//Science.-2002.-T.295,#5556.-S.813-818

doi: 10.1126/science.1066355

Buday L., Tompa P. Functional classification of scaffold proteins and related molecules//FEBS J.-2010.-T.277,#21.-S.4348-4355

doi: 10.1111/j.1742-4658.2010.07864.x

Budi E.H., Duan D., Derynck R. Transforming Growth Factor-b Receptors and Smads: Regulatory Complexity and Functional Versatility//Trends Cell Biol.-2017.-T.27,#9.-S.658-672

doi: 10.1016/j.tcb.2017.04.005

Chan K.K., Lo R.C. Deregulation of Frizzled Receptors in Hepatocellular Carcinoma//Int J Mol Sci.-2018.-T.19,#1.-S.313

doi: 10.3390/ijms19010313

D’Assoro A.B., Leon-Ferre R., Braune E.-B., Lendahl, U. Roles of Notch Signaling in the Tumor Microenvironment//Int. J. Mol. Sci.-2022.-T.23.-S.6241

https://doi.org/10.3390/ijms2311624

de Roo J.J.D., Staal F.J.T. Cell Signaling Pathway Reporters in Adult

Hematopoietic Stem Cells//Cells.-2020.-T.9,#10.-S.2264

doi: 10.3390/cells9102264

Derynck R., Budi E.N. Specificity, versatility and control of TGF-β family signaling// Sci Signal.-2019.-T.12,#570.-S.eaav5183

doi: 10.1126/scisignal.aav5183

Dijksterhuis J.P., Petersen J., Schulte G. WNT/Frizzled signalling: receptor–ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3//British Journal of Pharmacology.-2014.-T.171.-S.1195–1209

http://dx.doi.org/10.1111/bph.2014.171.issue-5

Dreesen O., Brivanlou A.N. Signaling Pathways in Cancer and Embryonic Stem Cells//Stem Cell Rev.-2007.-T.3,#1.-S.7-17

doi: 10.1007/s12015-007-0004-8

D'souza V., Miyamoto A., Weinmaster G. The many facets of Notch ligands//Oncogene.-2008.-T.27,#38.-S.5148–5167

doi:10.1038/onc.2008.229

D’souza V., Meloty-Kapella L., Weinmaster G. Canonical and non-canonical Notch ligands//Curr Top Dev Biol.-2010.-T.92.-S.73–129

doi:10.1016/S0070-2153(10)92003-6

Faes S., Dormond O. PI3K and AKT: Unfaithful Partners in Cancer//Int. J. Mol. Sci.-2015.-T.16.-S.21138-21152

doi:10.3390/ijms160921138

Goebel E.J., Hart K.N., McCoy J.C., Thompson T.B. Structural biology of the TGFb family//Experimental Biology and Medicine.-2019.-T.244.-S.1530–1546

doi: 10.1177/1535370219880894

Ghosh E., Kumari P., Jaiman D., Shukla A.K. Methodological advances: the unsung heroes of the GPCR structural revolution//Nat Rev Mol Cell Biol.-2015.-T.16,#2.-S.69-81

doi: 10.1038/nrm3933

Gordon W.R., Arnett K.L., Blacklow S.C. The molecular logic of Notch signaling: a structural and biochemical perspective//J Cell Sci.-2008.-T.121(Pt 19).-S.3109–3119

doi:10.1242/jcs.035683

Gurevich V.V., Gurevich E.V. Arrestin mutations: Some cause diseases, others promise cure//Prog Mol Biol Transl Sci.-2019.-T.161.-S.29–45

doi:10.1016/bs.pmbts.2018.09.004

Gurevich V.V., Gurevich E.V. Biased GPCR signaling: possible mechanisms and inherent limitations//Pharmacol Ther.-2020.-T.211.-S.107540

doi:10.1016/j.pharmthera.2020.107540

Hata A., Chen Y.-G. TGF-b Signaling from Receptors to Smads//Cold Spring Harb Perspect Biol.-2016.-T.8,#9.-S.a022061

doi: 10.1101/cshperspect.a022061

He Y., Sun M.M., Zhang G.G. et al. Targeting PI3K/Akt signal transduction for cancer therapy//Signal Transduct Target Ther.-2021.-T.6,#1.-S.425

doi: 10.1038/s41392-021-00828-5

Hodavance S.Y., Gareri C., Torok R.D. et al. G Protein-Coupled Receptor Biased Agonism//J Cardiovasc Pharmacol.-2016.-T.67,#3.-S.193–202

doi:10.1097/FJC.0000000000000356

Hu H.-H., Chen D.-Q., Wang Y.-N. et al. New insights into TGF-β/Smad signaling in tissue fibrosis//Chem Biol Interact.-2018.-T.292.-S.76-83

doi: 10.1016/j.cbi.2018.07.008

Huang X., Liu G., Guo J., Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes//Int J Biol Sci.-2018.-T.14,#11.-S.1483-1496

doi: 10.7150/ijbs.27173

Katoh M., Katoh M. Precision medicine for human cancers with

Notch signaling dysregulation (Review)//International journal of molecular medicine.-2020.-T.45.-S.279-297

doi: 10.3892/ijmm.2019.4418

Kopan R., Ilagan M.X.G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism//Cell.-2009.-T.137,#2.-S.216–233

doi:10.1016/j.cell.2009.03.045

Latek D., Modzelewska A., Trzaskowski B. et al. G protein-coupled receptors — recent advances//Acta Biochim Pol.-2012.-T.59,#4.-S.515–529

Li R., Elowitz M.V. Communication codes in developmental signaling pathways//Development.-2019.-T.146,#12.-S.dev170977

doi: 10.1242/dev.170977

Li W.X. Canonical and non-canonical JAK–STAT signaling//Trends Cell Biol.-2008.-T.18,#11.-S.545–551

doi:10.1016/j.tcb.2008.08.008

Logan C.Y., Nusse R. The wnt signaling pathway in

development and disease//Annu Rev Cell Dev Biol.-2004.-T.20.-S.781-810

doi: 10.1146/annurev.cellbio.20.010403.113126

Louvi A., Artavanis-Tsakonas S. Notch and disease: A growing field//Semin Cell Dev Biol.-2012.-T.23,#4.-S.473–480

doi:10.1016/j.semcdb.2012.02.005

MacDonald V.T., Tamai K., He H. Wnt/β-catenin signaling: components, mechanisms, and diseases//Dev Cell.-2009.-T.17,#1.-S.9–26 doi:10.1016/j.devcel.2009.06.016

Manning B.D., Toker A. AKT/PKB Signaling: Navigating the Network//Cell.-2017.-T.169,#3.-S.381–405

doi:10.1016/j.cell.2017.04.001

Massagué J., Seoane J., Wotton D. Smad transcription factors//Genes Dev.-2005.-T.19,#23.-S.2783-2810

doi: 10.1101/gad.1350705

Morikawa M., Derynck R., Miyazono K. TGF-b and the TGF-b Family: Context-Dependent Roles in Cell and Tissue Physiology//Cold Spring Harb Perspect Biol.-2016.-T.8,#5.-S.a021873

doi: 10.1101/cshperspect.a021873

Morris R., Kershaw N.J., Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway//Protein Sci.-2018.-T.27,#12.-S.1984-2009

doi: 10.1002/pro.3519

Odoemelam C.S., Percival B., Wallis H. et al. G-Protein coupled receptors: structure and function in drug discovery//RSC Adv.-2020.-T.10.-S.36337-36348

doi: 10.1039/d0ra08003a

Oldham W.M., Hamm H.E. Heterotrimeric G protein activation by G-protein-coupled receptors//Nat Rev Mol Cell Biol.-2008.-T.9,#1.-S.60-71

doi: 10.1038/nrm2299

Pencik J., Pham H.T., Schmoellerl J. et al. JAK-STAT signaling in cancer: From cytokines to non-coding

genome//Cytokine.-2016.-T.87.-S.26-36

doi: 10.1016/j.cyto.2016.06.017

Peterson Y.K., Luttrell L.M. The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling//Pharmacol Rev.-2017.-T.69,#3.-S.256–297

doi: 10.1124/pr.116.013367

Porta S., Paglino S., Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer//Front Oncol.-2014.-T.4.-S.64

doi: 10.3389/fonc.2014.00064

Puigdevall L., Michiels C., Stewardson C., Dumoutier L. JAK/STAT: Why choose a classical or an alternative pathway when you can have both?//J Cell Mol Med.-2022.-T.26,#7.-S.1865-1875

doi: 10.1111/jcmm.17168

Saini N., Sarin A. Spatial regulation and generation of diversity in signaling

pathways//J Biosci.-2021.-T.46.-S.30

doi: 10.1007/s12038-021-00150-w

Salazar J.L.. Yamamoto S. Integration of Drosophila and Human Genetics to understand Notch signaling related diseases//Adv Exp Med Biol.-2018.-T.1066.-S.141–185

doi:10.1007/978-3-319-89512-3_8

Schöneberg T., Schulz A., Biebermann H. et al. Mutant G-protein-coupled receptors as a cause of human diseases Pharmacol Ther.-2004.-T.104,#3.-S.173-206

doi: 10.1016/j.pharmthera.2004.08.008

Schöneberg T., Liebscher I. Mutations in G Protein–Coupled Receptors:

Mechanisms, Pathophysiology and Potential Therapeutic Approachess//Pharmacol Rev.-2021.-T.73.-S.89–119

https://doi.org/10.1124/pharmrev.120.000011

Seyedabadi M., Ghahremani M.H., Albert P.R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential//Pharmacol Ther.-2019.-T.200.-S.148-178

doi: 10.1016/j.pharmthera.2019.05.006

South A.P., Cho R.J., Aster J.C. The Double-Edged Sword of Notch Signaling in Cancer//Semin Cell Dev Biol.-2012.-T.23,#4.-S.458–464

doi:10.1016/j.semcdb.2012.01.017

Tao Y.-X. Inactivating mutations of G protein-coupled receptors and diseases:

Structure-function insights and therapeutic implications//Pharmacol Ther.-2006.-T.111,#3.-S.949-73

doi: 10.1016/j.pharmthera.2006.02.008

Thapa N., Horn H. T., Anderson R.A. Phosphoinositide Spatially Free AKT/PKB Activation to all Membrane Compartments//Adv Biol Regul.-2019.-T.72.-S.1-6

doi:10.1016/j.jbior.2019.04.002

Thompson M.D., Percy M.E., Burnham W.M., Cole D.E. G Protein-Coupled Receptors Disrupted in Human Genetic Disease//Methods Mol Biol.-2008.-T.448.-S.109-137

doi: 10.1007/978-1-59745-205-2_7

Thompson M.D., Hendy G.N., Percy M.E. et al. G Protein-Coupled Receptor Mutations and Human Genetic Disease//Methods Mol Biol.-2014.-T.1175.-S.153-87

doi: 10.1007/978-1-4939-0956-8_8

Tyagi A., Sharma A.K., Damodaran S. A Review on Notch Signaling and Colorectal Cancer//Cells.-2020.-T.9,#6.-S.1549

doi: 10.3390/cells9061549

Ulloa-Aguirre A., Zariñán T.. Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic

Prospects//Int. J. Mol. Sci.-2021.-T.22.-S.12329

https://doi.org/10.3390/ijms222212329

Vera J., Rateitschak K., Lange F. et al. Systems biology of JAK-STAT signalling in human malignancies//Prog Biophys Mol Biol.-2011.-T.106,#2.-S.426-34

doi: 10.1016/j.pbiomolbio.2011.06.013

Verrecchia F, Mauviel A. Transforming Growth Factor-b Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and

RegulationJ Invest Dermatol.-2002.-T.118,#2.-S.211-215

doi: 10.1046/j.1523-1747.2002.01641.x

Wang M.M. Notch signaling and Notch signaling modifiers//Int J Biochem Cell Biol.-2011.-T.43,#11.-S.1550–1562

doi:10.1016/j.biocel.2011.08.005

Willert K., Nusse R. Wnt Proteins//Cold Spring Harb Perspect Biol.-2012.-T.4,#9.-S.a007864

doi: 10.1101/cshperspect.a007864

Wootten D., Christopoulos A., Marti-Solano M. et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors//Nat Rev Mol Cell Biol.-2018.-T.19,#10.-S.638-653

doi: 10.1038/s41580-018-0049-3

Xie Y., Shi X., Sheng K. et al. PI3K/Akt signaling transduction pathway,

erythropoiesis and glycolysis in hypoxia (Review)//Molecular medicine reports.-2019.-T.19.-S.783-791

doi: 10.3892/mmr.2018.9713

Zalewska M., Siara M., Sajewicz W. G Protein-coupled receptors: abnormalities in signal transmission, disease states and pharmacotherapy//Acta Poloniae Pharmaceutica - Drug Research.-2014.-T.71,#2.-S.229-243

Zhang Y.E. Mechanistic insight into contextual TGF-β signaling//Curr Opin Cell Biol.-2018.-T.51.-S.1–7

doi:10.1016/j.ceb.2017.10.001

Zhang Z., Yao L., Yang J. et al. PI3K/Akt and HIF 1 signaling pathway

in hypoxia ischemia (Review)//Molecular medicine reports.-2018.-T.18.-S.3547-3554

doi: 10.3892/mmr.2018.9375

Zhou B., Lin W., Long Y. et al. Notch signaling pathway: architecture, disease, and therapeutics//Signal Transduct Target Ther.-2022.-T.7,#1.-S.95

doi: 10.1038/s41392-022-00934-y

Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334

Martincorena, I.; Fowler, J.C.; Wabik, A.; Lawson, A.R.J.; Abascal, F.; Hall, M.W.J.; Cagan, A.; Murai, K.; Mahbubani, K.; Stratton, M.R.; et al. Somatic mutant clones colonize the human esophagus with age. Science 2018, 362, 911–917.

Yokoyama, A.; Kakiuchi, N.; Yoshizato, T.; Nannya, Y.; Suzuki, H.; Takeuchi, Y.; Shiozawa, Y.; Sato, Y.; Aoki, K.; Kim, S.K.; et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 2019, 565, 312–317.

Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015, 348, 880–886.

Matsuno, Y.; Atsumi, Y.; Shimizu, A.; Katayama, K.; Fujimori, H.; Hyodo, M.; Minakawa, Y.; Nakatsu, Y.; Kaneko, S.; Hamamoto, R.; et al. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat. Commun. 2019, 10, 3925.

Vishwakarma R., McManus K.J. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes Cancers 2020, 12, 824; doi:10.3390/cancers12040824

Fidler, I.J. Commentary on “Tumor Heterogeneity and the Biology of Cancer Invasion and Metastasis”. Cancer Res. 2016, 76, 3441–3442.

Lee, J.K.; Choi, Y.L.; Kwon, M.; Park, P.J. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. Annu. Rev. Pathol. 2016, 11, 283–312.

Petrova, Y.I.; Schecterson, L.; Gumbiner, B.M. Roles for E-cadherin cell surface regulation in cancer. Mol. Biol. Cell 2016, 27, 3233–3244.

Pastushenko, I.; Blanpain, C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019, 29, 212–226.

Biron-Shental, T.; Liberman, M.; Sharvit, M.; Sukenik-Halevy, R.; Amiel, A. Amniocytes from aneuploidy embryos have enhanced random aneuploidy and signs of senescence-can these findings be related to medical problems? Gene 2015, 562, 232–235.

Nicholson, J.M.; Macedo, J.C.; Mattingly, A.J.; Wangsa, D.; Camps, J.; Lima, V.; Gomes, A.M.; Doria, S.; Ried, T.; Logarinho, E.; et al. Chromosome mis-segregation and cytokinesis failure in trisomic human cells. Elife 2015, 4

Zhu, J.; Tsai, H.J.; Gordon, M.R.; Li, R. Cellular Stress Associated with Aneuploidy. Dev. Cell 2018, 44, 420–431.

Yoshioka K.-i., Matsuno Y., Hyodo M., Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes Cancers 2019, 11, 1643; doi:10.3390/cancers11111643

Vysockaja I.V. , Letjagin V.P. , Shabanov M.A. , Kirsanov V.Ju. , Kim E.A. , Levkina N.V. Aktual'nye voprosy kancerogeneza Klinicheskaja onkogematologija. 2019;12(1):101–6

Anichkov N.M., Plotnikova N.A. O morfologii i klassifikacii opuholepodobnyh i rakovyh porazhenij predstatel'noj zhelezy. Arhiv patologii. 2001;63(5):44–50. [Anichkov NM, Plotnikova NA.On the morphology and classifi cation of prostate tumors and cancerous lesions. Arkhiv patologii. 2001;63(5):44–50. (In Russ)]

Issledovanija raka: beg s prepjatstvijami. Biohimija. 2014;79(5):493–500. [Likhtenshtein AV. Cancer research: a hurdle race. Biokhimiya. 2014;79(5):493– 500. (In Russ)]

Kushlinskij N.E., Nemcova M.V. Molekuljarno-biologicheskie harakteristiki zlokachestvennyh novoobrazovanij. Vestnik RAMN. 2014;69(1–2):5–15. doi: 10.15690/vramn.v69i1-2.934. [Kushlinskii NE, Nemtsova MV. Molecular biological characteristics of cancer. Annals of the Russian academy of medical sciences. 2014;69(1–2):5–15. doi: 10.15690/vramn.v69i1-2.934 . (In Russ)]

Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7(11):834–46. doi: 10.1038/nrc2256. 22. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222(1):1–15. doi: 10.1002/path.2727.

Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901. doi: 10.1016/j. devcel.2010.05.012.

Anichkov N.M. Biologicheskie i kliniko-morfologicheskie aspekty uchenija o metastazirovanii zlokachestvennyh opuholej. Medicinskij akademicheskij zhurnal. 2003;1:3–13. [Anichkov NM. Biological and morphological aspects of the doctrine of metastasis of malignant tumors. Meditsinskii akademicheskii zhurnal. 2003;1:3–13. (In Russ)]

Fernandez A, Esteller M. Viral epigenomes in human tumorigenesis. Oncogene. 2010;29(10):1405–20. doi: 10.1038/onc.2009.517

Junttila MR, Evan GL. p53 – a Jack of all trades but master of none. Nat Rev Cancer. 2009;9(11);821–9. doi: 10.1038/nrc2728.

Pleshkan V.V., Alekseenko I.V., Zinov'eva M.V. i dr. Promotory so specificheskoj aktivnost'ju v rakovyh kletkah pri gennoj terapii melanomy. Acta Naturae. 2011;3(2):14–23. [Pleshkan VV, Alekseenko IV, Zinov’eva MV. Promoters with cancer cell-specifi c activity for melanoma gene therapy. Acta Naturae. 2011;3(2):14–23. (In Russ)]

Kovaleva O.V., Nazarova O.R., Matveev V.B., Grachev A.N. Molekuljarnye osobennosti pochechno-kletochnogo raka: rannjaja diagnostika i perspektivy terapii. Uspehi molekuljarnoj onkologii. 2014;1(2):36–43. [Kovaleva OV, Nazarova OR, Matveev VB, Grachev AN. Molecular features of renal cell carcinoma: early diagnosis and perspectives for therapy. Uspekhi molekulyarnoi onkologii. 2014;1(2):36–43. (In Russ)]

Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9. doi: 10.1038/nature10275.

Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48. doi: 10.1101/gad.1756509.

Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711. doi: 10.1016/j. devcel.2010.10.005

Maev I.V., Zajrat'janc O.V., Kucherjavyj Ju.A. Kishechnaja metaplazija slizistoj obolochki zheludka v praktike gastrojenterologa: sovremennyj vzgljad na problemu. Ross. zhurnal gastrojenterologii, gepatologii, koloproktologii. 2006; 4: 38—47.

Correa M., Piazuelo B. The gastric precancerous cascade. J. Dig. Dis. 2012; 13(1): 2—9

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 Mar 4;144(5):646-74 Abstract available at http://www.ncbi.nlm.nih.gov/pubmed/21376230.

Yoshioka K.-i., Matsuno Y., Hyodo M., Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes Cancers 2019, 11, 1643; doi:10.3390/cancers11111643

Lyzhko N.A. Molekuljarno-geneticheskie mehanizmy iniciacii, promocii i progressii opuholej Rossijskij bioterapevticheskij zhurnal 4'2017 TOm 16 . 7-17

Teshelova V.T. Kancerogenez i aktivacija perifericheskih limfocitov. Uspehi sovremennoj biologii. 2003;123(5):495–505. [Teshelova VT. Carcinogenesis and activation of peripheral lymphocytes. Uspekhi sovremennoi biologii. 2003;123(5):495–505. (In Russ)]

Bindea G, Mlecnik B, Fridman WH. Natural immunity to cancer in humans. Curr Opin Immunol. 2010;22(2):215–22. doi: 10.1016/j.coi.2010.02.006.

Grivennikov S, Greten FR, Karin M. Immunity, infl ammation and cancer. Cell. 2010;140(6):883–99. doi: 10.1016/j.cell.2010.01.025. 45. Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117. doi: 10.1016/S0065-230X(10)07003-X

Chao Ma et.al. Ma C.,VioJ.W., Kuang A.R., Huang K. Tang G.S.[The effects of Antisense Oligonucleotides bcl-2/bcl-x1 and bcl-2 on proliferation and Apoptosis of Breast Cancer Cells]. Sishuan Da Xue Xue Bio Yi Xue Ban.:2009 40(5):780-783.

Chopra A. [99mTc]Human telomerase reverse-transcriptase antisense mRNA oligonucleotide. Molecular Imaging and Contrast Agent Database (MICAD): National Center for Biotechnology Information (US); 2008

Kurreck J. Antisense technologies. Improvement through novel chemical modifications. European Journal of Biochemistry. 2003;270(8):1628‐1644..

Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Research. 2016;44(14):6518-48.

Linnane E, Davey P, Zhang P, et al. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Research. 2019;47(9):4375‐4392.

Zhou T, Jia X, LiH. et al Neptumar- targeted nano sigol delivery carrier for oligonucleotides; ofaracteristies in vitro and in vivo. International journal of Nanonadicine. 2011:6;1527-1534

Ou X, Tan T, Hel, Li Y, Li S, Kuang A. Antitumar effects of radio iodinated antigense oligonuclide mediated by VIP receptor. Cancer Gene Ther. 2005; 12(3):313-320.

Olie RA, Hafner C, Küttel R, et al. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. The Journal of Investigative Dermatology. 2002;118(3):505‐512.

Xiu B, Chi Y, Liu L, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Moecularl Cancer. 2019;18(1):187.

Nagini S. Breast Cancer: Current Molecular Therapeutic Targets and New Players. Anti-cancer Agents in Medicinal Chemistry. 2017;17(2):152‐163.

Kashyap AS, Thelemann T, Klar R, et al. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity. Journal of Immunotherapy Cancer. 2019;7(1):67.

Sun, Y., Yan, L., Guo, J. et al. Inhibition of SRSF3 by antisense oligonucleotides increases the sensitivity of squamous cell carcinoma of the oral cavity and breast cancer cells to treatment with paclitaxel. Cancer Chemother Pharmacol. 2019;84: 1133–1143.

Smirnova O.V., Borisov V.I. Immunoterapija v lekarstvennom lechenii bol'nyh s metastaticheskim trojnym negativnym rakom molochnoj zhelezy. Onkologija. Zhurnal im. P.A. Gercena. 2018;7(6):60-66.

Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book. 2016;35:298‐308.

Hudler P. Genetic Aspects of Gastric Cancer Instability [Jelektronnyj resurs] // The Scientific World Journal. – 2012. – Vol. 2012. URL: http://www.hindawi.com/journals/ tswj/2012/761909/ (data obrashhenija 31.01.2015)].

Buffart T.E., van Grieken N.C., Tijssen M., Coffa J., Ylstra B., Grabsch H.I., van de Velde C.J., Carvalho B., Meijer G.A. High resolution analysis of DNA copy-number aberrations of chromosomes 8, 13, and 20 in gastric cancers // Virchows Arch. 2009. Vol. 455. P. 213–223. doi: 10.1007/s00428-009-0814-y

Bamias A.T., Bai M.C., Agnantis N.J., Michael M.C., Alamanos Y.P., Stefanaki S.V., Razi E.D., Skarlos D.V., Kappas A.M., Pavlidis N.A. Prognostic significance of the deleted in colorectal cancer gene protein expression in high-risk resected gastric carcinoma // Cancer Invest. 2003. Vol. 21. P. 333–340

Simpson A.J., Caballero O.L., Pena S.D. Microsatellite instability as a tool for the classification of gastric cancer // Trends Mol. Med. 2001. Vol. 7. P. 76–80

Iacopetta B.J., Soong R., House A.K., Hamelin R. Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-beta type II receptor, IGFII receptor, and BAX genes // J. Pathol. 1999. Vol. 187. P. 428–432].

Corso G., Pedrazzani C., Marrelli D., Pascale V., Pinto E., Roviello F. Correlation of microsatellite instability at multiple loci with long-term survival in advanced gastric carcinoma // Arch. Surg. 2009. Vol. 144. P. 722–727. doi: 10.1001/archsurg.2009.42

Ushijima T., Sasako M. Focus on gastric cancer // Cancer Cell. 2004. Vol. 5. P. 121–125

Yu J., Cheng Y.Y., Tao Q., Lam C.N., Geng H., Tian L.W., Wong Y.P., Tong J.H., Ying J.M., Jin H., To K.F., Chan F.K., Sung J.J. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer // Gastroenterology. 2009. Vol. 136. P. 640–651. doi: 10.1053/j.gastro.2008.10.050

Otsubo T., Akiyama Y., Yanagihara K., Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cellcycle arrest and apoptosis // Br. J. Cancer. 2008. Vol. 98. P. 824–831. doi: 10.1038/sj.bjc.6604193

Leung W.K., To K.F., Chu E.S., Chan M.W., Bai A.H., Ng E.K., Chan F.K., Sung J.J. Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer // Br. J. Cancer. 2005. Vol. 92. P. 2190–2194

Buffart T.E., Overmeer R.M., Steenbergen R.D., Tijssen M., van Grieken N.C., Snijders P.J., Grabsch H.I., van de Velde C.J., Carvalho B., Meijer G.A. MAL promoter hypermethylation as a novel prognostic marker in gastric cancer // Br. J. Cancer. 2008. Vol. 99. P. 1802–1807. doi: 10.1038/ sj.bjc.6604777

Downloads

  • PDF

Published

2022-08-23

How to Cite

1.
DOLOMATOV, Sergey, AGEEVA, Elizaveta & ZUKOW, Walery. Molecular biology of the cell. Journal of Education, Health and Sport [online]. 23 August 2022, T. 12, nr 8, s. 730–926. [accessed 29.3.2023]. DOI 10.12775/JEHS.2022.12.08.074.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 12 No. 8 (2022)

Section

Review Articles

License

Copyright (c) 2022 Sergey Dolomatov, Elizaveta Ageeva, Walery Zukow

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 114
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

molecular biology, cell, epigenetics, transcription factors, cell signaling pathways, tumor molecular biology
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop