Advances in osteosynthesis - a basic overview of modern fixation materials
DOI:
https://doi.org/10.12775/JEHS.2022.12.07.041Keywords
materials in orthopedics,, osteointegration, polymers, biopolymers, bio-absorbable materialsAbstract
The dynamic development of trauma-orthopedic surgery and accompanying material technology has led in recent years to the need for close cooperation between researchers in these fields. In a short time, thanks to the cooperation of engineers and doctors, the general approach to the method of bone anastomosis has changed significantly. The need to optimize the effects of treatment, i.e. to quickly recovery, reduce the number of postoperative complications, reduce the number of reoperations, and reduce the costs of procedures and treatment used has resulted in the development of many new technologies that have set trends in modern traumatology. The widespread use of LCP (Locking compression plate) and locking screws, the development of polymers and biopolymers with a modified chemical structure, a significant improvement in the biocompatibility and cytocompatibility of the materials used, and the implementation of products with significant micro-roughness that improve osseointegration are the well-known and commonly used effects of this cooperation today .
Materials science related to orthopedics is an extremely complex and multi-threaded field. Its continuous development requires a periodic summary of the results and development directions provided, which allows faster evaluation and interpretation by researchers. The purpose of the following work is to summarize the latest research on materials and methods used in osteosynthesis in a legible way for potential recipients of this information from various fields.
References
Müller ME, Allgöwer M, Schneider R et al. Manual of INTERNAL FIXATION. 3rd ed. Springer Berlin, Heidelberg, 1991. doi:10.1007/978-3-662-02695-3
Schatzker J. Changes in the AO/ASIF principles and methods. Injury. 1995; 26(2): B51-B56. doi:10.1016/0020-1383(95)96899-F
Rozbruch SR, Müller U, Gautier E, et al. The evolution of femoral shaft plating technique. Clin Orthop Relat Res. 1998; 354:195-208. doi:10.1097/00003086-199809000-00024
Perren SM. Evolution of the internal fixation of long bone fractures: The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Jt Surg. 2002; 84(8):1093-110. doi:10.1302/0301-620x.84b8.13752
Mast J, Jakob R, Ganz R. Planning and Reduction Technique in Fracture Surgery. 1st ed. Springer Berlin, Heidelberg, 1989. doi:10.1007/978-3-642-61306-7
Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Jt Surg - Ser B. 1985; 67(4):650-5. doi:10.1302/0301-620x.67b4.4030869
Kinast C, Bolhofner BR, Mast JW, et al. Subtrochanteric fractures of the femur. Results of treatment with the 95° condylar blade-plate. Clin Orthop Relat Res. 1989; (238):122-30. doi:10.1097/00003086-198901000-00019
Wagner M. General principles for the clinical use of the LCP. Injury. 2003; 34(2): B31-42. doi:10.1016/j.injury.2003.09.023
Huang ZM, Fujihara K. Stiffness and strength design of composite bone plates. Compos Sci Technol. 2005; 65(1): 153-157. doi:10.1016/j.compscitech.2004.06.006
Deshmukh RM, Kulkarni SS. A Review on Biomaterials in Orthopedic Bone Plate Application. Int J Curr Eng Technol. 2015; 5(4): 2587-2591.
Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Reports. 2014; 77: 1-34. doi:10.1016/j.mser.2014.01.001
Weiler A, Helling HJ, Kirch U, et al. Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: Experimental study in sheep. J Bone. 1996; 78-B(3): 369–376. doi:10.1302/0301-620x.78b3.0780369
Bostman O, Hirvensalo E, Makinen J, et al. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Jt Surg - Ser B. 1990; 72(4):592-596. doi:10.1302/0301-620x.72b4.2199452
Pollard JD, Deyhim A, Rigby RB, et al. Comparison of pullout strength between 3.5-mm fully threaded, bicortical screws and 4.0-mm partially threaded, cancellous screws in the fixation of medial malleolar fractures. J Foot Ankle Surg. 2010; 49(3):248-52. doi:10.1053/j.jfas.2010.02.006
Wang T, Boone C, Behn AW, et al. Cancellous screws are biomechanically superior to cortical screws in metaphyseal bone. Orthopedics. 2016; 39(5): e828-832. doi:10.3928/01477447-20160509-01
Lin TH, Hu HT, Wang HC, et al. Evaluation of osseous integration of titanium orthopedic screws with novel SLA treatment in porcine model. PLoS One. 2017; 12(11): e0188364. doi:10.1371/journal.pone.0188364
Miller DL, Goswami T, Prayson MJ. Overview of the locking compression plate and its clinical applications in fracture healing. J Surg Orthop Adv. 2008; 17(4): 271-81.
Tonino AJ, Davidson CL, Klopper PJ, et al. Protection from stress in bone and its effects. Experiments with stainless steel and plastic plates in dogs. J Bone Jt Surg - Ser B. 1976; 58(1): 107-113. doi:10.1302/0301-620x.58b1.1270486
Schwyzer HK, Cordey J, Brun S, et al. Bone Loss after Internal Fixation Using Plates, Determination in Humans Using Computed Tomography. In: Biomechanics: Current Interdisciplinary Research. 2nd ed. Springer, Dordrecht; 1985. p. 191-196 doi:10.1007/978-94-011-7432-9_23
Hidaka S, Gustilo RB. Refracture of bones of the forearm after plate removal. J Bone Jt Surg - Ser A. 1984; 66(8): 1241-1243. doi:10.2106/00004623-198466080-00012
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys. 2011; 49(12): 832–864. doi:10.1002/polb.22259
Bertesteanu S, Chifiriuc M, Grumezescu A, et al. Biomedical Applications of Synthetic, Biodegradable Polymers for the Development of Anti-Infective Strategies. Curr Med Chem. 2014; 21(29): 3383-90. doi:10.2174/0929867321666140304104328
Miller RA, Brady JM, Cutright DE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res. 1977; 11(5): 711-719. doi:10.1002/jbm.820110507
Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015; 8(9): 5744–5794. doi:10.3390/ma8095273
Martin C, Winet H, Bao JY. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials. 1996; 17(24): 2373-2380. doi:10.1016/S0142-9612(96)00075-0
Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res. 1997; 38(2): 105-114. doi:10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U
Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials (Basel). 2015; 8(6): 2953-2993. doi:10.3390/ma8062953
Sheikh Z, Geffers M, Christel T, et al. Chelate setting of alkali ion substituted calcium phosphates. Ceram Int. 2015; 41(8): 10010-10017. doi:10.1016/j.ceramint.2015.04.083
Hasan MS, Ahmed I, Parsons AJ, et al. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix. J Biomater Appl. 2013; 28(3): 354-66. doi:10.1177/0885328212453634
Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015; 18:262-9. doi:10.1016/j.actbio.2015.02.010
Walker J, Shadanbaz S, Woodfield TBF, et al. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J Biomed Mater Res - Part B Appl Biomater. 2014; 102(6): 1316-31. doi:10.1002/jbm.b.33113
Song G, Atrens A. Understanding magnesium corrosion. A framework for improved alloy performance. Adv Eng Mater. 2014; 102(6): 1316-31. doi:10.1002/adem.200310405
Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008; 10(8): B3-B14. doi:10.1002/adem.200800035
Huehnerschulte TA, Angrisani N, Rittershaus D, et al. In vivo corrosion of two novel magnesium alloys ZEK100 and AX30 and their mechanical suitability as biodegradable implants. Materials (Basel). 2011; 4(6): 1144-1167. doi:10.3390/ma4061144
Ullmann B, Reifenrath J, Seitz JM, et al. Influence of the grain size on the in vivo degradation behaviour of the magnesium alloy LAE442. Proc Inst Mech Eng Part H J Eng Med. 2013; 227(3): 317-26. doi:10.1177/0954411912471495
Perren SM. Evolution and rationale of locked internal fixator technology. Introductory remarks. Injury. 2001; 32 Suppl 2: B3-9. doi:10.1016/s0020-1383(01)00120-6
Ahmad M, Nanda R, Bajwa AS, et al. Biomechanical testing of the locking compression plate: When does the distance between bone and implant significantly reduce construct stability? Injury. 2007; 38(3): 358-64. doi:10.1016/j.injury.2006.08.058
Song B, Li W, Chen Z, et al. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study. J Orthop Transl. 2016; 8:32-39. doi:10.1016/j.jot.2016.09.001
Suryavanshi A, Khanna K, Sindhu KR, et al. Development of bone screw using novel biodegradable composite orthopedic biomaterial: From material design to in vitro biomechanical and in vivo biocompatibility evaluation. Biomed Mater. 2019; 14(4): 045020. doi:10.1088/1748-605X/ab16be
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maciej Kozioł, Piotr Piech, Wojciech Wokurka, Ryszard Maciejewski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 429
Number of citations: 0