The role of chemokines in liver disease
DOI:
https://doi.org/10.12775/JEHS.2022.12.07.050Keywords
chemokines, liver disease, alcoholic liver diseaseAbstract
Chemokines are involved in many processes, including the normal immune response to infection, as well as pathological processes such as carcinogenesis, autoimmunity and inappropriate inflammatory responses. These processes represent an important aspect in the context of liver disease, its progression and the possibility of inhibiting fibrosis. Chemokines belong to low molecular weight proteins with a wide range of functions affecting cell migration, involving different physiological and pathological processes. Depending on whether they participate in the maintenance of homeostasis during periods of well-being or represent a type of intervention of the organism to its disorders, their secretion by cells is constitutive or induced. This article focuses on the classification, structure and functions of these molecules and their possible involvement in the pathogenesis of liver diseases, as well as the possibilities of therapeutic application of this knowledge.
References
Ulvmar, M. H., Hub, E., & Rot, A. (2011). Atypical chemokine receptors. Experimental Cell Research, 317(5), 556-568.
R. Thorpe et al, Chemokine/chemokine receptor nomenclature. (2003). Cytokine, 21(1), 48-49.
Goldsmith A., Yoshie O., A New Classification Review System and Their Role in Immunity. Immunity: 2000, Vol. 12, 121-127.
Mazur G., Jaskuła E., Kryczek I.: Participation of chemokines in neoplastic diseases Adv.Clin.Exp.Med. 2004 Vol.13 no.2; pp.315-325
Murphy P.: Chemokines and chemokine receptors, Principles of the immune response, part one, chapter 10, 157-170
Brzostowski, J. A., & Kimmel, A. R. (2001). Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends in Biochemical Sciences, 26(5), 291-297.
Sun, Y., Huang, J., Xiang, Y., Bastepe, M., Jüppner, H., Kobilka, B. K., ... Huang, X.-Y. (2006). Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. The EMBO Journal, 26(1), 53-64.
Nibbs, R., Graham, G., & Rot, A. (2003). Chemokines on the move: control by the chemokine "interceptors" Duffy blood group antigen and D6. Seminars in Immunology, 15(5), 287-294.
Baggiolini, M. (2001). Chemokines in pathology and medicine. Journal of Internal Medicine, 250(2), 91-104.
Henc I., Bryl E., Chemokines as important mediators of inflammation. Forum of Family Medicine 2013, vol. 7, no. 5, 251-262.
Jaeschke, H., Farhood, A., & Smith, C. W. (1991). Neutrophil-induced liver cell injury in endotoxic shock is CD11b/CD18 dependent.
Campo, J. A. D., Gallego, P., & Grande, L. (2018). The role of the inflammatory response in liver disease: Therapeutic strategies. World Journal of Hepatology, 10(1), 1-7.
Liaskou, E., Wilson, D. V., & Oo, Y. H. (2012). Innate Immune Cells in Liver Inflammation. Mediators of Inflammation, 2012, 1-21. doi:10.1155/2012/949157
Kennedy, A. D., & DeLeo, F. R. (2008). Neutrophil apoptosis and the resolution of infection. Immunologic Research, 43(1-3), 25-61.
Jaeschke, H., & Hasegawa, T. (2006) Role of neutrophils in acute inflammatory liver injury. Liver International, 26(8), 912-919
Ziol, M., Tepper, M., Lohez, M., Arcangeli, G., Ganne, N., Christidis, C., ... Guettier, C. (2001). Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. Journal of Hepatology, 34(2), 254-260.
Jaeschke, H. (2002). Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol, 27(1), 23-27
Jaeschke, H., Farhood, A., & Smith, C. W. (1991). Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. American Journal of Physiology- Gastrointestinal and Liver Physiology, 261(6), G1051-G1056.
Molnar RG, Wang P, Ayala A, Ganey PE, Roth RA, and Chaudry IH. The role of neutrophils in producing hepatocellular dysfunction during the hyperdynamic stage of sepsis in rats. J Surg Res 73:117-122, 1997.
Jaeschke, H., Farhood, A., & Smith, C. W. (1990). Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. The FASEB Journal, 4(15), 3355-3359.
Marra, F., & Tacke, F. (2014). Roles for Chemokines in Liver Disease. Gastroenterology, 147(3), 577-594.e1.
Wehr, A., Baeck, C., Heymann, F., Niemietz, P. M., Hammerich, L., Martin, C., ... Tacke, F. (2013). Chemokine Receptor CXCR6-Dependent Hepatic NK T Cell Accumulation Promotes Inflammation and Liver Fibrosis. The Journal of Immunology, 190(10), 5226-5236.
Oo, Y. H., Shetty, S., & Adams, D. H. (2010). The Role of Chemokines in the Recruitment of Lymphocytes to the Liver. Digestive Diseases, 28(1), 31-44.
Hammerich, L., Heymann, F., & Tacke, F. (2011). Role of IL-17 and Th17 Cells in Liver Diseases. Clinical and Developmental Immunology, 2011, 1-12.
Freeman, C. M., Wilson, G. C., Nojima, H., & Lentsch, A. B. (2015). Role of CXC Chemokines in Liver Repair and Regeneration. Liver Regeneration, 113-123.
HOGABOAM, C. M., BONE-LARSON, C. L., STEINHAUSER, M. L., LUKACS, N. W., COLLETTI, L. M., SIMPSON, K. J., ... KUNKEL, S. L. (1999). Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. The FASEB Journal, 13(12), 1565-1574.
Colletti, L. M., Green, M., Burdick, M. D., Kunkel, S. L., & Strieter, R. M. (1998). PROLIFERATIVE EFFECTS OF CXC CHEMOKINES IN RAT HEPATOCYTES IN VITRO AND IN VIVO. Shock, 10(4), 248-257.
Sheron, N., Bird, G., Koskinas, J., Portmann, B., Ceska, M., Lindley, I., & William, R. (1993). Circulating and tissue levels of the neutrophil chemotaxin interleukin-8 are elevated in severe acute alcoholic hepatitis, and tissue levels correlate with neutrophil infiltration. Hepatology, 18(1), 41-46
Hill, D. L. B., Marsano, L. S., & McClain, C. J. (1993). Increased plasma interleukin-8 concentrations in alcoholic hepatitis. Hepatology, 18(3), 576-580.
Maher, J. J. (1995). Rat hepatocytes and Kupffer cells interact to produce interleukin-8 (CINC) in the setting of ethanol. American Journal of Physiology-Gastrointestinal and Liver Physiology, 269(4), G518-G523.
Shiratori Y, Takada H, Hikiba Y, et al. Production of chemotactic factor, interleukin-8, from hepatocytes exposed to ethanol. Hepatology 1993;18:1477-1482
Huang, Y.-S., Chan, C.-Y., Wu, J.-C., Pai, C.-H., Chao, Y., & Lee, S.-D. (1996). Serum levels of interleukin-8 in alcoholic liver disease: relationship with disease stage, biochemical parameters and survival. Journal of Hepatology, 24(4), 377-384.
Dominguez, M., Miquel, R., Colmenero, J., Moreno, M., García-Pagán, J., Bosch, J., ... Bataller, R. (2009). Hepatic Expression of CXC Chemokines Predicts Portal Hypertension and Survival in Patients With Alcoholic Hepatitis. Gastroenterology, 136(5), 1639-1650.
Degré, D., Lemmers, A., Gustot, T., Ouziel, R., Trépo, E., Demetter, P., ... Moreno, C. (2012). Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates. Clinical & Experimental Immunology, 169(3), 302-310.
Affò, S., Morales-Ibanez, O., Rodrigo-Torres, D., Altamirano, J., Blaya, D., Dapito, D. H., ... Sancho-Bru, P. (2014). CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut, 63(11), 1782-1792
Radwan, M. M., Radwan, B. M., Nandipati, K. C., Hunter, W. J., & Agrawal, D. K. (2013). Immunologic and molecular basis of non-alcoholic steatohepatitis and non-alcoholic steatohepatitis. Expert Review of Clinical Immunology, 9(8), 727-738.
Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., ... Jr, A. W. F. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. Journal of Clinical Investigation, 116(1), 115-124.
Greco, D., Kotronen, A., Westerbacka, J., Puig, O., Arkkila, P., Kiviluoto, T., ... Yki-Järvinen, H. (2008). Gene expression in human NAFLD. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294(5), G1281-G1287.
Haukeland JW, Damas JK, Konopski Z, Loberg EM, Haaland T, Goverud I, Torjesen PA, Birkeland K, Bjoro K, Aukrust P. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 44: 1167-1174, 2006.
Li, B.-H., He, F.-P., Yang, X., Chen, Y.-W., & Fan, J.-G. (2017). Steatosis-induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progression. Translational Research, 180, 103-117.e4.
Fahey, S., Dempsey, E., & Long, A. (2013). The role of chemokines in acute and chronic hepatitis C infection. Cellular and Molecular Immunology, 11(1), 25-40.
Katsounas A, Schlaak JF, Lempicki RA. CCL5: a double-edged sword in host defense against the hepatitis C virus. Int Rev Immunol 2011;30:366-378.
Katsounas, A., Trippler, M., Wang, B., Polis, M., Lempicki, R. A., Kottilil, S., ... Schlaak, J. F. (2011). CCL5 mRNA is a marker for early fibrosis in chronic hepatitis C and is regulated by interferon-α therapy and toll-like receptor 3 signaling. Journal of Viral Hepatitis, 19(2), 128-137.
Wei XQ, Wen ZF, Zheng FP, Yao JL. [Changes of RANTES levels in livers of patients with chronic hepatitis B: the clinical significance and the possible mechanisms]. Zhonghua Gan Zang Bing Za Zhi. 2007;15:585-588
Ren Y, Poon RT-P, Tsui H-T, Chen W-H, Li Z, Lau C, et al. Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis. Clin Cancer Res 2003;9:5996-6001
Sanmamed, M. F., Carranza-Rua, O., Alfaro, C., Onate, C., Martin-Algarra, S., Perez, G., ... Melero, I. (2014). Serum Interleukin-8 Reflects Tumor Burden and Treatment Response across Malignancies of Multiple Tissue Origins. Clinical Cancer Research, 20(22), 5697-5707.
Xiang, Z., Zeng, Z., Tang, Z., Fan, J., Zhuang, P., Liang, Y., ... He, J. (2009). Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer, 9(1).
Sutton, A., Friand, V., Brule-Donneger, S., Chaigneau, T., Ziol, M., Sainte-Catherine, O., ... Charnaux, N. (2007). Stromal Cell-Derived Factor-1/Chemokine (C-X-C Motif) Ligand 12 Stimulates Human Hepatoma Cell Growth, Migration, and Invasion. Molecular Cancer Research, 5(1), 21-33.
Dixon, L. J., Barnes, M., Tang, H., Pritchard, M. T., & Nagy, L. E. (2013). Kupffer Cells in the Liver. Comprehensive Physiology.
Bryniarski K., Immunology (2017)
Gujral, J. S., Hinson, J. A., Farhood, A., & 11, H. (2004). NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 287(1), G243-G252.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Klaudia Sapuła, Jakub Gołacki, Aleksandra Marczak, Michalina Hordejuk, Klaudyna Iwaszko-Sochal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 454
Number of citations: 0