Analysis of localisation of megakaryocytes in the bone marrow of the rat - possible relationship with innervations
DOI:
https://doi.org/10.12775/JEHS.2022.12.07.049Keywords
megakaryocytes, platelets, bone marrow, innervation, neuropeptide Y, PGP 9.5Abstract
Within the bone marrow, megakaryocytes thrive in an environment rich in numerous growth factors that influences their development, maturation, and may play a role in signaling the start of platelet production. Up to now, experiments concerning localisation of various populations of cells in rat bone marrow showed their certain relationship to the blood vessels. There are strikingly few reliable sources of information available in the literature that confirm the relationship between the localisation of these cells in connection to nerve fibers. Therefore the purpose of the present study was to examine if megakaryocytes are located in a defined relation to sensory and sympathetic nerve fibers.
The study used immature 6 weeks rats of the Wistar breed of both sexes. The animals were kept under constant lighting conditions (12 hours light-dark cycle) and temperature, and had unrestricted access to water and food (standard laboratory rodent feed).Double immunostaining method was applied with usage of secondary antibodies conjugated with fluorochromes (Cy3 and DTAF) to identify cells. The antibody against CD42d was used to immunolocalise megakaryocytes, while in order to identify the distribution of nerves, antibodies anti-NPY (for detection sympathetic nerve fibers) and anti-PGP 9.5 (sensory nerve fibers) were applied.
These findings showed the presence of megakaryocyte and megakaryoblastic cells which were distributed with a close relationship to the blood vessels but some of them were located in parenchyma. It was shown that NPY-positive and PGP 9.5-positive cells were present in the vicinity of blood cells. Furthermore, some megakaryocytes were located near PGP 9.5-labelled cells. The relationship between sympathetic nerve fibers containing neuropeptide Y and megakaryocytes was also detected.
References
Boulais P.E., Frenette P.S. Making sense of hematopoietic stem cell niches. Blood 2015; 125: 2621–2629. doi: 10.1182/blood-2014-09-570192.
Calvi L.M., Link D.C. The hematopoietic stem cell niche in homeostasis and disease. Blood 2015; 126:2443-51. doi: 10.1182/blood-2015-07-533588.
Garcia-Garcia A., Mendez –Ferrer S. Advances in Stem Cells and their Niches, Chapter Three-The Role of the CNS in the regulation of HSCs 2017; 1: 35-57. doi:10.1016/bs.asn.2016.12.002.
Kopeć- Szlęzak J. Krwiotwórcza komórka macierzysta w niszy szpikowej. J. Transf. Med.2011;4(3):129-135.
Yamazaki K., Allen T.D. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells and the recognition of a novel anatomical unit: the neuro-reticular complex. J Anat 1990; 187:261-276. doi: 10.1002/aja.1001870306.
Nilsson S.K., Johnston H.M., Coverdale J.A. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97:2293-2299. doi:10.1182/blood.V97.8.2293.
Calvo W. The innervation of the bone marrow in laboratory animals. Am J Anat 1968; 123:315-328. doi: 10.1002/aja.1001230206.
Jung W.Ch., Levesqueb J.P., Ruitenberg M.J. It takes nerve to fight back: The significance of neural innervation of the bone marrow and spleen for immune function. Seminars in Cell & Developmental Biology 2017; 61: 60–70. doi: 10.1016/j.semcdb.2016.08.010.
Bjurholm A,. Kreicbergs A., Brodin E., Schultzberg M. Substance P- and CGRP-immunoreactive nerves in bone. Peptides 1988; 9: 165–171. doi: 10.1016/0196-9781(88)90023-x.
Gajda M., Litwin J.A., Cichocki T., et al. Development of sensory innervation in rat tibia: co- localization of CGRP and substance P with growth- associated protein 43 (GAP-43). J Anat 2005; 207:135-144. doi:10.1111/j.1469-7580.2005.00434.x.
Nance D.M., Sanders V.M. Autonomic innervation and regulation of the immune system. Brain, Behavior and Immunity 2007; 21:736-745. doi: 10.1016/j.bbi.2007.03.008.
Gajda M. Immunohistochemiczna charakterystyka włókien nerwowych zaopatrujących kości piszczelowe szczura w trakcie rozwoju osobniczego, Rozprawa doktorska. Kraków, Collegium Medicum UJ, 2003.
Gajda M., Litwin J.A., Cichocki T., et al. Development of sensory innervation in rat tibia: co- localization of CGRP and substance P with growth- associated protein 43 (GAP-43). J Anat 2005; 207:135-144. doi:10.1111/j.1469-7580.2005.00434.x.
Patel S.R., Hartwig J.H., Italiano Jr J.E. The biogenesis of platelets from megakaryocyte and proplatelets. J Clin Invest 2005; 115:3348-3354. doi: 10.1172/JCI26891.
Italiano J.E., Hartwig J.H. Megakaryocyte and Platelet Structure, Hematology 2018; 124 :1857-1869. doi:10.1016/B978-0-323-35762-3.00124-4.
Pang L., Weiss M.J., Poncz M. Megakaryocyte biology and related disorders. J Clin Invest 2005; 115:3332-3338. doi: 10.1172/JCI26720.
Guo T., Wang X., Qu Y., Yin Y., Jing T., Zhang Q. Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investing 2015; 2:3. doi: 10.3978/j.issn.2306-9759.2015.02.01.
Battinelli E.M., Hartwig J.H., Italiano Jr. J.E. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol 2007; 14:419-426. doi: 10.1097/moh.0b013e3282bad151.
Schmid-Schonbein H., Grunau G., Brauer H. The physiology of the functional „vessel- blood” unit 1. Exempla Haemorheologica,1980; 48.
Junt T., Schulze H., Chen Z., Massberg S., Goerge T., Krueger A., et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007; 317:1767-1770. doi: 10.1126/science.1146304.
Geddis A.E., Kaushansky K. The root of platelet production. Science 2007; 317:1689-1690. doi: 10.1126/science.1148946.
Nowicki M., Ostalska- Nowicka D., Kondraciuk B., Miśkowiak B.The significance of substance P in physiological and malignant haematopoiesis. J Clin Pathol 2007; 60:749-755. doi:10.1136/jcp.2006.041475.
Schulze H., Shivdasani RA. Mechanisms of thrombopoiesis. J Thromb Haemost 2005; 3:1717-1724. doi: 10.1111/j.1538-7836.2005.01426.x.
Fishley B., Alexander W.S. Thrombopoietin signalling in physiology and disease. Growth Factors 2004; 22:151-155. doi:10.1080/08977190410001720851.
Kaushansky K.: The molecular mechanisms that control thrombopoiesis. J Clin Invest 2005; 115:3339-3347. doi: 10.1172/JCI26674
Kaushansky K., Drachman J.G. The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production. Oncogene 2002; 21:3359-3367. doi: 10.1038/sj.onc.1205323.
Ericsson A., Schalling M., McIntyre K.R., Lundberg J., Larhammar D., Seroogy K., et al. Detection of neuropeptide Y and its mRNA in megakaryocytes: enhanced levels in certain autoimmune mice. Proc Natl Acad Sci USA 1987; 84:5585-5589. doi:10.1073/PNAS.84.16.5585.
Naito K., Tamahashi J.N,. Chiba T., Kaneda K., Okuda M., Endo K. et al. The microvasculature of the human bone marrow correlated with the distribution of hematopoietic cells. A computer assisted three dimensional reconstruction study. Tohoku J Exp Med 1992; 166:439-450. doi:10.1620/TJEM.166.439.
Hermans M.H., Opstelten D. In situ visualization of hemopoietic cell subsets and stromal elements in rat and mouse bone marrow by immunostaining of frozen sections. The Journal of Histochemistry and Cytochemistry 1991; 39:1627-1634. doi: 10.1177/39.12.1940317.
Bender M., Stegner D., Nieswandt B. Model systems for platelet receptor shedding. Platelets 2016; 28:325-332. doi:10.1080/09537104.2016.1195491.
López J.A. Platelets in Thrombotic and Non-Thrombotic Disorders. The Platelet Glycoprotein Ib-IX-V Complex,2017; 7:85-97.
Ravanat C., Morales M., Azorsa D., Moog S., Schuhler S., Grunert P., et al. Gene cloning of rat and mouse platelet glycoprotein V: Identification of megakaryocyte- specific promoters and demonstration of functional thrombin cleavage. Blood 1997; 89: 3253-3262. doi:10.1182/BLOOD.V89.9.3253.
Sato N., Kiyokawa N., Taguchi T., Suzuki T., Sekino T., Ohmi K., et al. Functional conservation of platelet glycoprotein V promoter between mouse and human megakaryocytes. Exp Hematology 2000; 28:802-814. doi:10.1016/S0301-472X(00)00176-4.
Katayama Y., Battista M., Kao W.M., Hidalgo A., Peired A.J., Thomas S.A., et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2005; 124:407-421. doi: 10.1016/j.cell.2005.10.041.
Elefteriou F. Impact of the Autonomic Nervous System on the Skeleton. Physiol Rev. 2018; 98: 1083-1112. doi: 10.1152/physrev.00014.2017.
Genever P.G., Wilkinson D., Patton A.J., Peet N., Hong Y., Mathur A., et al. Expression of a functional N-methyl-D-aspartate- type glutamate receptor by bone marrow megakaryocytes. Blood 1999; 93:2876-2883. doi:10.1182/BLOOD.V93.9.2876.409K31_2876_2883.
Kalev-Zylinska M.L., Green T.N., Morel-Kopp M.Ch., Sun P.P., Park Y.E., Lasham A., et al. N-methyl-d-aspartate receptors amplify activation and aggregation of human platelet. Thrombosis Research 2014; 133: 837-847. doi:10.1016/j.thromres.2014.02.011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Małgorzata Piątek, Renata Polaniak, Zbigniew Tabarowski, Wiktoria Staśkiewicz, Agata Kiciak, Mateusz Grajek
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 452
Number of citations: 0