What is the pro-inflammatory dietary model associated with?
DOI:
https://doi.org/10.12775/JEHS.2022.12.06.024Keywords
oxidative stress, free radicals, antioxidant capacity, multivariability, polypatoligiesAbstract
Introduction. Cellular potential disruption leads to several polyplatoligias due to increased systemic inflammation, as a consequence of the visualized multivariate appearance. Objective. To highlight the relevance of the pathomechanism of oxidative stress and oxidative potential about changes in metabolic mechanisms at the cellular level, predisposing to polypatoligia and the development of destructive transformations visualized in outward appearance targeted by a pro-inflammatory nutritional model. Material and methods. A sample of 226 subjects was selected by random selection of respondents. The author's questionnaire concerned metric data, level of physical exercise, diagnosed disease entity, inflammatory changes within the body dermis, and level of frequency of consumption of selected food groups. The obtained results were verified by statistical analysis with a significance level of α <0.05. Results. The subject was characterized by a diagnosed multimorbidity at the level of (approximately 20%) about the individual clinical course of the respondent. The anthropometric parameter BMI without sex division (due to predominance of female subjects) among 55% of the whole group was within the normal range, constituting 24.4 kg/m2, showed a significant correlation directed at the pathomechanism of multimorbidity at the level of 78% in physical appearance. Conclusions. The pathomechanism of developing polyposis is significantly associated with the appearance of changes within the tissues translated into the shell system and anthropometric measurements related to the value of body mass index. Multivariable within the common coat is significantly dependent on the implemented phytotherapeutics - bioactive components derived from oregano, to obtain high antioxidant potential.
References
Czerska M. Mikołajewska K. Zieliński M. Gromadzińska J. Wąsowicz W. (2015). Today’s oxidative stress markers. Med. Pracy. (3):393–405. doi.org/10.13075/mp.5893.00137
Stelmach-Mardas M. (2011). Wpływ sposobu żywienia oraz zwiększonej podaży steroli roślinnych na profil lipidowy i parametry stresu oksydacyjnego w grupie kobiet otyłych. Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu.
Agarwal A. Majzoub A. (2017). Laboratory tests for oxidative stress. Indian J Urol.33:199-206. doi: 10.4103/iju.IJU_9_17
Zubelewicz-Szkodzińska B. (2018). Dietoprofilaktyka chorób żywieniowozależnych – wybrane zagadnienia. część II. rozdział VI. wyd. ŚUM, Katowice
Prior RL., (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. J Funct Foods. 18:797-810. doi.org/10.1016/j.jff.2014.12.018
Olędzki R. (2013). Znakowanie żywności pod względem wartości antyoksydacyjnej. Nauk. Inż. i Technol. 3(10)
U.S. Department of Agriculture, Agricultural Research Service. (2010). Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. Nutrient Data Laboratory Home Page: http://www.ars.usda.gov/nutrientdata/orac
Sieron K, Knapik K, Onik G, Romuk E, Birkner E, Kwiatek S and Sieron A (2021) Electromagnetic Fields Modify Redox Balance in the Rat Gastrointestinal Tract. Front. Public Health 9:710484. doi: 10.3389/fpubh.2021.710484
Piwowar A. (2014). Zaawansowane produkty utleniania białek jako potencjalny czynnik diagnostyczny i prognostyczny w chorobach o wskazywanym udziale stresu oksydacyjnego, Katedra i Zakład Biochemii Farmaceutycznej, Wydział Farmaceutyczny z Oddziałem Analityki Medycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu. Postepy Hig Med Dosw. 68: 446-458
Ognik K. Cholewińska E. (2018). Biomarkery wykorzystywane w ocenie oksydacyjnych uszkodzeń białek. KOSMOS. Vol. 67, 2, 347–359
Filip M. Maciag J. Nosalski R. Korbut R. Guzik T. (2012). Endothelial dysfunction related to oxidative stress and inflammation in perivascular adipose tissue. Postępy Biochem. 58 (2)
Nuszkiewicz J. Kwiatkowska A. Majko K. Wesołowski R. Szewczyk-Golec K. (2017). Stres oksydacyjny i stan zapalny a rozwój otyłości: protekcyjne działanie melatoniny, Probl Hig Epidemiol. 98(3): 226-232
Abdel-Hady E. Mohamed F. Ahmed M. Abdel-Salam M. and Ayobe M. (2021). Supplementation of Lipoic Acid, Zinc and Clopidogrel Reduces Mortality Rate and Incidence of Ventricular Arrhythmia in Experimental Myocardial Infarction. Front. Physiol. 12:582223. doi: 10.3389/fphys.2021.582223
Wojsiat J. Korczyński J. Borowiecka M, Żbikowska HM,. (2017). Udział stresu oksydacyjnego w niepłodności żeńskiej oraz w zapłodnieniu metodą in vitro. Postepy Hig Med Dosw. 71: 359-366
Polak G. Wertel I. Kwaśniewski W. Derewianka-Polak M. Kotarski J. (2013). Udział metabolizmu żelaza oraz stresu oksydacyjnego w patogenezie endometriozy, Katedra i Klinika Ginekologii Onkologicznej i Ginekologii UM w Lublinie. Ginekol Pol. 84, 62-64
Giacobbo Bl., Doorduin J. Klein HC., Dierckx R. Bromberg E. Vries E. (2019). Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation, Mol Neurobiol. 56:3295–3312. doi: 10.1007/s12035-018-1283-6.
Jopkiewicz S. (2018). Stres oksydacyjny Część I. Stres oksydacyjny jako czynnik rozwoju chorób cywilizacyjnych. Environmental Medicine. Vol. 21, No. 2, 48-52, doi: 10.19243/2018207
Pawłowska M. Mila-Kierzenkowska C. Kwiatkowska A. Paprocki J. (2016). Ocena wybranych parametrów stresu oksydacyjnego u chorych na łuszczycę. Diagn Lab. 52(2): 101-106
Gregorczyk-Maślanka K. Kurzawa R. (2016). Mikrobiota organizmu ludzkiego i jej wpływ na homeostazę mmunologiczną – część II, Klinika Alergologii i Pneumonologii, Instytut Gruźlicy i Chorób Płuc O.T. w Rabce-Zdroju. Alergia Astma Immunologia. 21 (3): 151-155
Twardoch M. (2016). Alergia a stres oksydacyjny. Ann. Acad. Med. Siles.70: 15–23, doi:10.18794/aams/41812
Stoś K. Rychlik E. Woźniak A. Ołtarzewski M. Wojda B. Przygoda B. Matczuk E. Pietraś E. Kłys W. (2021). Krajowe badanie sposobu żywienia i stanu odżywienia populacji polskiej. Narodowy Instytut Zdrowia Publicznego PZH-Państwowy Instytut Badawczy. Warszawa
Darewicz M. Borawska-Dziadkiewicz J. Iwaniak A. Minkiewicz P. (2016). Produkty hydrolizy białek ryb jako prewencyjne czynniki stresu oksydacyjnego – Probl Hig i Epidemiol 97(2):113-117
Aune D. Keum N. Giovannucci E. Fadnes LT., Boffetta P. Greenwood DC., Tonstad S. Vatten LJ., Riboli E. Norat T. (2018). Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies.Meta-analysis. Am J Clin Nutr. 1;108(5):1069-1091, doi: 10.1093/ajcn/nqy097.
Scarano A, Butelli E, De Santis S, Cavalcanti E, Hill L, De Angelis M, Giovinazzo G, Chieppa M, Martin C and Santino A (2018) Combined Dietary Anthocyanins, Flavonols, and Stilbenoids Alleviate Inflammatory Bowel Disease Symptoms in Mice. Front. Nutr. 4:75. doi: 10.3389/fnut.2017.00075
Wallert M. Ziegler M. Wang X. Maluenda A. Xu X. Yap ML., Witt R. Giles C. Kluge S. Hortmann M. Zhang J. Meikle P. Lorkowski S. Peter K. (2019). α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury, Redox Biol.26:101292. doi: 10.1016/j.redox.2019.101292.
26. Hussin M. Hamid AA., Abas F. Ramli NS., Jaafar AH., Roowi S. Majid NA.,
Pak Dek MS., (2019). NMR-Based Metabolomics Profiling for Radical Scavenging and Anti-Aging Properties of Selected Herbs. Molecules. 23(17).3208.doi: 10.3390/molecules24173208
Zou Y. Wang J. Peng J. Wei H. (2016). Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells. Oxid Med Cell Longev. 5987183. doi: 10.1155/2016/5987183
Ardiana M. Pikir BS., Santoso A. Hermawan HO., Al-Farabi MJ., (2020). Effect of Nigella sativa Supplementation on Oxidative Stress and Antioxidant Parameters: A Meta-Analysis of Randomized Controlled Trials. ScientificWorldJournal. 2390706. doi: 10.1155/2020/2390706
Aebisher D. Cichonski J. Szpyrka E. Masjonis S. Chrzanowski G. (2021). Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity, Molecules. 26(13): 3793. doi: 10.3390/molecules26133793
Lin X. Bai D. Wei Z. Zhang Y. Huang Y. Deng H. Huang X. (2019). Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of, antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One.14(5): e0216711. doi: 10.1371/journal.pone.0216711
Aune D. (2019). Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr. (Suppl 4):404–421. doi: 10.1093/advances/nmz042
Stephens CR, Easton JF, Robles-Cabrera A, Fossion R, de la Cruz L, Martínez-Tapia R, Barajas-Martínez A. Hernández-Chávez A. López-Rivera JA and Rivera AL (2020) The Impact of Education and Age on Metabolic Disorders. Front. Public Health 8:180. doi: 10.3389/fpubh.2020.00180
Clarfield AM and Dwolatzky T. (2021). Age and Ageing During the COVID-19 Pandemic; Challenges to Public Health and to the Health of the Public. Front. Public Health 9:655831. doi: 10.3389/fpubh.2021.655831
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mateusz Grajek, Martina Grot, Maciej Nigowski, Maria Kujawińska, Michał Górski, Agnieszka Białek-Dratwa, Karolina Krupa-Kotara
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 334
Number of citations: 0