Prevalence, incidence, and risk of cancers in patients with acromegaly: review
DOI:
https://doi.org/10.12775/JEHS.2022.12.06.001Keywords
acromegaly, neoplasms, breast cancer, prostate cancer, thyroid cancer, colon cancerAbstract
Acromegaly is a relatively rare disease, with the incidence of 0.2 - 1.1 cases in 100 000 people per year. Increased secretion of growth hormone (GH) is the main pathomechanism. GH stimulates the liver to the insulin-like growth factor type 1 (IGF-1) production. It leads to the tissues overgrowth, facial changes, metabolic and cardiovascular comorbidities, such as diabetes, hyperthyroidism, or hypertension. The main aim of this review is to provide the most up to date knowledge about epidemiology and risk factors of neoplasms which occur more often in acromegaly, than in the general population. Some studies showed that substances from the IGF group – including IGF-1, have a cancerogenic effect on the cells. According to that fact, groups of acromegalic patients were examined in the search for cancers. Studies delivered that there is a higher chance of neoplasms in acromegalic patients. The most widely described cancers in the relation with this disease are: prostate cancer, breast cancer, thyroid cancer, and colon cancer. There are some neoplasms which have lesser number of studies, such as: renal cancer, neoplasms of the female reproductive system, haematological cancers as well as osteosarcoma. Cancers occurs more frequently in acromegalic patients and have a major impact on patients' life-span. Early detection as well as quick provision with the adequate treatment is highly necessary for extending patients’ lives.
References
Dal J, Leisner MZ, Hermansen K, et al. Cancer Incidence in Patients With Acromegaly: A Cohort Study and Meta-Analysis of the Literature. J Clin Endocrinol Metab. 2018; 103(6): 2182–2188. DOI https://doi.org/10.1210/jc.2017-02457
Maffezzoni F, Formenti AM. Acromegaly and Bone. Minerva Endocrinol. 2018; 43(2): 168–182. DOI https://doi.org/10.23736/S0391-1977.17.02733-X.
Melmed S. Acromegaly Pathogenesis and Treatment. J Clin Invest. 2009; 119(11): 3189–3202. DOI https://doi.org/10.1172/JCI39375.
Vilar L, Vilar CF, Lyra R, et al. Acromegaly: Clinical Features at Diagnosis. Pituitary. 2017; 20(1): 22–32. DOI https://doi.org/10.1007/s11102-016-0772-8.
Borson-Chazot F, Garby L, Raverot G, et al. Acromegaly Induced by Ectopic Secretion of GHRH: A Review 30 Years after GHRH Discovery. Ann Endocrinol-Paris 2012; 73(6): 497–502. DOI https://doi.org/10.1016/j.ando.2012.09.004.
Beuschlein F, Strasburger CJ, Siegerstetter V, et al. Acromegaly Caused by Secretion of Growth Hormone by a Non-Hodgkin’s Lymphoma. NEJM. 2000; 342(25): 1871–1876. DOI https://doi.org/10.1056/NEJM200006223422504.
Lavrentaki A, Paluzzi A, Wass JAH, et al. Epidemiology of Acromegaly: Review of Population Studies. Pituitary 2017, 20 (1), 4–9. DOI https://doi.org/10.1007/s11102-016-0754-x.
Renehan AG, Zwahlen M, Minder C, et al. Insulin-like Growth Factor (IGF)-I, IGF Binding Protein-3, and Cancer Risk: Systematic Review and Meta-Regression Analysis. Lancet. 2004; 363(9418): 1346–1353. DOI https://doi.org/10.1016/S0140-6736(04)16044-3.
Tanno S, Tanno S, Mitsuuchi Y, et al. AKT Activation Up-Regulates Insulin-like Growth Factor I Receptor Expression and Promotes Invasiveness of Human Pancreatic Cancer Cells. Cancer Res. 2001; 61(2): 589–593. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11212254/
Agamia NF, Abdallah DM, Sorour O, et al. Skin Expression of Mammalian Target of Rapamycin and Forkhead Box Transcription Factor O1, and Serum Insulin-like Growth Factor-1 in Patients with Acne Vulgaris and Their Relationship with Diet. Br J Dermatol. 2016; 174(6): 1299–1307. DOI https://doi.org/10.1111/bjd.14409.
Luttrell LM, Van Biesen T, Hawes BE, et al. G(Βγ) Subunits Mediate Mitogen-Activated Protein Kinase Activation by the Tyrosine Kinase Insulin-like Growth Factor 1 Receptor. J Bio Chem. 1995; 270(28): 16495–16498. DOI https://doi.org/10.1074/jbc.270.28.16495.
Lu J, Zhao H, Xu J, et al. Elevated Cyclin D1 Expression Is Governed by Plasma IGF-1 through Ras/Raf/MEK/ERK Pathway in Rumen Epithelium of Goats Supplying a High Metabolizable Energy Diet. J Anim Physiol Anim Nutr. 2013; 97(6): 1170–1178. DOI https://doi.org/10.1111/jpn.12026.
Chen J, Zurawski G, Zurawski S, et al. A Novel Vaccine for Mantle Cell Lymphoma Based on Targeting Cyclin D1 to Dendritic Cells via CD40. J Hematol Oncol. 2015; 8(1): 1–15. DOI https://doi.org/10.1186/s13045-015-0131-7.
Doglio A, Dani C, Grimaldi P, et al. Growth Hormone Stimulates C-Fos Gene Expression by Means of Protein Kinase C without Increasing Inositol Lipid Turnover. Proc Natl Acad Sci USA. 1989; 86(4): 1148–1152. DOI https://doi.org/10.1073/pnas.86.4.1148.
Slootweg MC, De Groot RP, Herrmann-Erlee MPM, et al. Growth Hormone Induces Expression of C-Jun and Jun B Oncogenes and Employs a Protein Kinase C Signal Transduction Pathway for the Induction of c-Fos Oncogene Expression. J Mol Endocrinol. 1991; 6(2): 179–188. DOI https://doi.org/10.1677/jme.0.0060179.
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca-Cancer J Clin. 2021; 71(3): 209-249. DOI https://doi.org/10.3322/caac.21660.
Colao A, Marzullo P, Ferone D, et al. Prostatic Hyperplasia: An Unknown Feature of Acromegaly. J Clin Endocrinol Metab. 1998; 83(3): 775–779. DOI https://doi.org/10.1210/jcem.83.3.4645.
Colao A, Marzullo P, Spiezia S, et al. Effect of Growth Hormone (GH) and Insulin-like Growth Factor I on Prostate Diseases: An Ultrasonographic and Endocrine Study in Acromegaly, GH Deficiency, and Healthy Subjects. J Clin Endocrinol Metab. 1999; 84(6): 1986–1991. DOI https://doi.org/10.1210/jcem.84.6.5776.
Colao A, Marzullo P, Spiezia S, et al. Effect of Two Years of Growth Hormone and Insulin-like Growth Factor-I Suppression on Prostate Diseases in Acromegalic Patients. J Clin Endocrinol Metab. 2000; 85(10): 3754–3761. DOI https://doi.org/10.1210/jcem.85.10.6907.
Bałdys-Waligórska A, Krzentowska A, Gołkowski F, et al. The Prevalence of Benign and Malignant Neoplasms in Acromegalic Patients. Endokrynol Pol. 2010; 61(1): 29–34. Retrieved from https://journals.viamedica.pl/endokrynologia_polska/article/view/25407/20231
Corrêa LL, Balarini Lima GA, Cavallieri SA, et al. Prostatic Disorders in Acromegalic Patients Experience of a Brazilian Center. Int Braz J Urol. 2013; 39(3): 393–401. DOI https://doi.org/10.1590/S1677-5538.IBJU.2013.03.13.
Madajewicz S, Bhargava A, Wajsman Z, et al. Insulin-Induced Growth Hormone Responses in Patients with Prostatic Carcinoma. Urology. 1979; 13(5): 490–493. DOI https://doi.org/10.1016/0090-4295(79)90454-0.
Evaluation of Plasma Hormone Concentrations in Relation to Clinical Staging in Patients with Prostatic Cancer: BRITISH PROSTATE STUDY GROUP*. BJU International. 1979; 51(5): 382–389. DOI https://doi.org/10.1111/j.1464-410X.1979.tb02891.x.
Mantzoros CS, Tzonou A, Signorello LB, et al. Insulin-like Growth Factor 1 in Relation to Prostate Cancer and Benign Prostatic Hyperplasia. Br J Cancer. 1997; 76(9): 1115–1118. DOI https://doi.org/10.1038/bjc.1997.520.
Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma Insulin-like Growth Factor-I and Prostate Cancer Risk: A Prospective Study. Science. 1998; 279(5350): 563–566. DOI https://doi.org/10.1126/science.279.5350.563.
Wolk A, Mantzoros CS, Andersson SO, et al. Insulin-like Growth Factor 1 and Prostate Cancer Risk: A Population-Based, Case-Control Study. J Natl Cancer Inst. 1998; 90(12): 911–915. DOI https://doi.org/10.1093/jnci/90.12.911.
Watts EL, Goldacre R, Key TJ, et al. Hormone-Related Diseases and Prostate Cancer: An English National Record Linkage Study. Int J Cancer. 2020; 147(3): 803–810. DOI https://doi.org/10.1002/ijc.32808.
Dal J, Leisner MZ, Hermansen K, et al. Cancer Incidence in Patients With Acromegaly: A Cohort Study and Meta-Analysis of the Literature. J Clin Endocrinol Metab. 2018; 103(6): 2182–2188. DOI https://doi.org/10.1210/jc.2017-02457.
Harper ME, Pierrepoint CG, Griffiths K. Carcinoma of the Prostate: Relationship of Pretreatment Hormone Levels to Survival. Eur J Cancer Clin Oncol. 1984; 20(4): 477–482. DOI https://doi.org/10.1016/0277-5379(84)90232-3.
Colao A, Di Somma C, Spiezia S, et al. Effect of Growth Hormone (GH) and/or Testosterone Replacement on the Prostate in GH-Deficient Adult Patients. J Clin Endocrinol Metab. 2003; 88(1): 88–94. DOI https://doi.org/10.1210/jc.2002-020812.
Child CJ, Conroy D, Zimmermann AG, et al. Incidence of Primary Cancers and Intracranial Tumour Recurrences in GH-Treated and Untreated Adult Hypopituitary Patients: Analyses from the Hypopituitary Control and Complications Study. Eur J Endocrinol. 2015; 172(6): 779–790. DOI https://doi.org/10.1530/EJE-14-1123.
le Roux CW, Jenkins PJ, Chew SL, et al. Growth Hormone Replacement Does Not Increase Serum Prostate-Specific Antigen in Hypopituitary Men over 50 Years. Eur J Endocrinol. 2002; 147(1):, 59–63. DOI https://doi.org/10.1530/eje.0.1470059.
Torosian M. H. Growth Hormone and Prostate Cancer Growth and Metastasis in Tumor-Bearing Animals. J Pediatr Endocrinol. 1993; 6(1): 93–97. DOI https://doi.org/10.1515/jpem.1993.6.1.93.
Fuhrman B, Barba M, Schünemann HJ, et al. Basal Growth Hormone Concentrations in Blood and the Risk for Prostate Cancer: A Case-Control Study. Prostate. 2005; 64(2): 109–115. DOI https://doi.org/10.1002/pros.20203.
Majeed N, Blouin M-J, Kaplan-Lefko PJ, et al. A Germ Line Mutation That Delays Prostate Cancer Progression and Prolongs Survival in a Murine Prostate Cancer Model. Oncogene. 2005; 24(29): 4736–4740. DOI https://doi.org/10.1038/sj.onc.1208572.
Wang Z, Prins GS, Coschigano KT, et al. Disruption of Growth Hormone Signaling Retards Early Stages of Prostate Carcinogenesis in the C3(1)/T Antigen Mouse. Endocrinology. 2005; 146(12): 5188–5196. DOI https://doi.org/10.1210/en.2005-0607.
Wang Z, Luque RM, Kineman RD, et al. Disruption of Growth Hormone Signaling Retards Prostate Carcinogenesis in the Probasin/TAg Rat. Endocrinology. 2008; 149(3): 1366–1376. DOI https://doi.org/10.1210/en.2007-1410.
Takahara K, Ibuki N, Ghaffari M, et al. The Influence of Growth Hormone/Insulin-like Growth Factor Deficiency on Prostatic Dysplasia in PbARR2-Cre, PTEN Knockout Mice. Prostate Cancer Prostatic Dis. 2013; 16(3): 239–247. DOI https://doi.org/10.1038/pcan.2013.14.
Weiss-Messer E, Merom O, Adi A, et al.. Growth Hormone (GH) Receptors in Prostate Cancer: Gene Expression in Human Tissues and Cell Lines and Characterization, GH Signaling and Androgen Receptor Regulation in LNCaP Cells. Mol Cell Endocrinol. 2004; 220(1–2): 109–123. DOI https://doi.org/10.1016/j.mce.2004.03.004.
Bidosee M, Karry R, Weiss-Messer E, et al. Regulation of Growth Hormone Receptors in Human Prostate Cancer Cell Lines. Mol Cell Endocrinol. 2009; 309(1–2): 82–92. DOI https://doi.org/10.1016/j.mce.2009.06.004.
Bidosee M, Karry R, Weiss-Messer E, et al. Growth Hormone Affects Gene Expression and Proliferation in Human Prostate Cancer Cells. Int J Androl. 2011; 34(2): 124–137. DOI https://doi.org/10.1111/j.1365-2605.2010.01064.x.
Nakonechnaya AO, Jefferson HS, Chen X, et al. Differential Effects of Exogenous and Autocrine Growth Hormone on LNCaP Prostate Cancer Cell Proliferation and Survival. J Cell Biochem. 2013; 114(6): 1322–1335. DOI https://doi.org/10.1002/jcb.24473.
Nakonechnaya AO, Shewchuk BM. Growth Hormone Enhances LNCaP Prostate Cancer Cell Motility. Endocr Res. 2015; 40(2): 97–105. DOI https://doi.org/10.3109/07435800.2014.966383.
Grant ES, Ross MB, Ballard S, et al. The Insulin-like Growth Factor Type I Receptor Stimulates Growth and Suppresses Apoptosis in Prostatic Stromal Cells. J Clin Endocrinol Metab. 1998; 83(9): 3252–3257. DOI https://doi.org/10.1210/jcem.83.9.5119.
Ruan W, Powell-Braxton L, Kopchick JJ, et al. Evidence That Insulin-like Growth Factor I and Growth Hormone Are Required for Prostate Gland Development. Endocrinology. 1999; 140(5): 1984–1989. DOI https://doi.org/10.1210/endo.140.5.6721.
Schmid H-P, Gregorin J, Altwein JE. Growth Hormone Inhibitors in Prostate Cancer: A Systematic Analysis. Urol Int. 2008; 81(1): 17–22. DOI https://doi.org/10.1159/000137635.
Colao A, Grasso LFS, Giustina A, et al. Acromegaly. Nat Rev Dis Primers. 2019; 5(1):20. DOI https://doi.org/10.1038/s41572-019-0071-6.
Arteaga CL, Kitten LJ, Coronado EB, et al. Blockade of the Type I Somatomedin Receptor Inhibits Growth of Human Breast Cancer Cells in Athymic Mice. J Clin Investig. 1989; 84(5): 1418–1423. DOI https://doi.org/10.1172/JCI114315.
Bates P, Fisher R, Ward A, et al. Mammary Cancer in Transgenic Mice Expressing Insulin-like Growth Factor II (IGF-II). Br J Cancer. 1995; 72(5): 1189–1193. DOI https://doi.org/10.1038/bjc.1995.484.
Pollak M, Costantino J, Polychronakos C, et al. Effect of Tamoxifen on Serum Insulinlike Growth Factor I Levels in Stage I Breast Cancer Patients. J Natl Cancer Inst. 1990; 82(21): 1693–1697. DOI https://doi.org/10.1093/jnci/82.21.1693.
Ng ST, Zhou J, Adesanya OO, et al. Growth Hormone Treatment Induces Mammary Gland Hyperplasia in Aging Primates. Nat Med. 1997; 3(10): 1141–1144. DOI https://doi.org/10.1038/nm1097-1141.
Firth SM, Baxter RC. Cellular Actions of the Insulin-like Growth Factor Binding Proteins. Endocr Rev. 2002; 23(6): 824–854. DOI https://doi.org/10.1210/er.2001-0033.
Hankinson SE, Willett WC, Colditz GA, et al. Circulating Concentrations of Insulin-like Growth Factor-I and Risk of Breast Cancer. Lancet. 1998; 351(9113): 1393–1396. DOI https://doi.org/10.1016/S0140-6736(97)10384-1.
Del Giudice ME, Fantus IG, Ezzat S, et al. Goodwin, P. J. Insulin and Related Factors in Premenopausal Breast Cancer Risk. Breast Cancer Res Treat. 1998; 47(2): 111–120. DOI https://doi.org/10.1023/A:1005831013718.
Toniolo P, Bruning PF, Akhmedkhanov A, et al. A. Serum Insulin-like Growth Factor-I and Breast Cancer. Int J Cancer. 2000; 88(5): 828–832. DOI https://doi.org/10.1002/1097-0215(20001201)88:5<828::AID-IJC22>3.0.CO;2-8.
Renehan AG, Zwahlen M, Minder C, et al. Insulin-like Growth Factor (IGF)-I, IGF Binding Protein-3, and Cancer Risk: Systematic Review and Meta-Regression Analysis. Lancet. 2004; 363(9418): 1346–1353. DOI https://doi.org/10.1016/S0140-6736(04)16044-3.
Dogan S, Atmaca A, Dagdelen S, et al. Evaluation of Thyroid Diseases and Differentiated Thyroid Cancer in Acromegalic Patients. Endocrine. 2014; 45(1): 114–121. DOI https://doi.org/10.1007/s12020-013-9981-3.
Kurimoto M, Fukuda I, Hizuka N, et al. The Prevalence of Benign and Malignant Tumors in Patients with Acromegaly at a Single Institute. Endocr J. 2008; 55(1): 67–71. DOI https://doi.org/10.1507/endocrj.k07e-010.
Ruchała M, Szczepanek-Parulska E, Komorska-Piotrowiak E. Diagnostyka i leczenie akromegalii: OncoReview. 2011; 1(4(4)): 240–247.
Malicka J, Kurowska M, Oszywa-Chabros A, et al. Choroby tarczycy u pacjentów z akromegalią - obserwacje własne. Forum Medycyny Rodzinnej. 2015; 9(2): 164–166. Retrieved from https://journals.viamedica.pl/forum_medycyny_rodzinnej/article/view/42334/30143
Tirosh A, Shimon I. Complications of Acromegaly: Thyroid and Colon. Pituitary. 2017; 20(1): 70–75. DOI https://doi.org/10.1007/s11102-016-0744-z.
Danilowicz K, Sosa S, Gonzalez Pernas MS, et al. Acromegaly and Thyroid Cancer: Analysis of Evolution in a Series of Patients. Clin Diabetes Endocrinol. 2020; 6(1): 24. DOI https://doi.org/10.1186/s40842-020-00113-4.
Renehan AG, Brennan BM. Acromegaly, Growth Hormone and Cancer Risk. Best practice & research. J Clin Endocrinol Metab. 2008; 22(4): 639–657. DOI https://doi.org/10.1016/j.beem.2008.08.011.
Heidarpour M, Rezvanian H, Kachuei A. Acromegaly and Papillary Thyroid Carcinoma: A Case Series. J Res Med Sci. 2019; 24:81. DOI https://doi.org/10.4103/jrms.JRMS_969_18.
Ezzat S, Melmed S. Clinical Review 18: Are Patients with Acromegaly at Increased Risk for Neoplasia? J Clin Endocrinol Metab. 1991; 72(2): 245–249. DOI https://doi.org/10.1210/jcem-72-2-245.
Brunner JE, Johnson CC, Zafar S, et al. Colon Cancer and Polyps in Acromegaly: Increased Risk Associated with Family History of Colon Cancer. Clin Endocrinol (Oxf). 1990; 32(1): 65–71. DOI https://doi.org/10.1111/j.1365-2265.1990.tb03751.x.
Terzolo M, Tappero G, Borretta G, et al. High Prevalence of Colonic Polyps in Patients with Acromegaly. Influence of Sex and Age. Arch Intern Med. 1994; 154(11): 1272–1276. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8203994/
Melmed S, Jackson I, Kleinberg D, et al. Current Treatment Guidelines for Acromegaly. J Clin Endocrinol Metab. 1998; 83(8): 2646–2652. DOI https://doi.org/10.1210/jcem.83.8.4995.
Jenkins PJ, Fairclough PD, Richards T, et al. Acromegaly, Colonic Polyps and Carcinoma. Clin Endocrinol (Oxf). 1997; 47(1): 17–22. DOI https://doi.org/10.1046/j.1365-2265.1997.1911029.x.
Terzolo M, Reimondo G, Gasperi M, et al.Colonoscopic Screening and Follow-up in Patients with Acromegaly: A Multicenter Study in Italy. J Clin Endocrinol Metab. 2005; 90(1): 84–90. DOI https://doi.org/10.1210/jc.2004-0240.
Matyja V, Kos-Kudla B, Foltyn W, et al. Detection of Colorectal Lesions by Using Autofluorescence Colonoscopy in Acromegalics and Their Relation to Serum Growth Hormone and Insulin-like Growth Factor-1 Levels. Neuro Endocrinol Lett. 2006; 27(5): 639–643. Retrieved from https://pubmed.ncbi.nlm.nih.gov/17159821/
Rokkas T, Pistiolas D, Sechopoulos P, et al. Risk of Colorectal Neoplasm in Patients with Acromegaly: A Meta-Analysis. World J Gastroenterol. 2008; 14(22): 3484–3489. DOI https://doi.org/10.3748/wjg.14.3484.
Ochiai Y, Inoshita N, Iizuka T, et al. Clinicopathological Features of Colorectal Polyps and Risk of Colorectal Cancer in Acromegaly. Eur J Endocrinol. 2020; 182(3): 313–318. DOI https://doi.org/10.1530/EJE-19-0813.
Chesnokova V, Zonis S, Zhou C, et al. Growth Hormone Is Permissive for Neoplastic Colon Growth. PNAS. 2016; 113(23): E3250–E3259. DOI https://doi.org/10.1073/pnas.1600561113.
Renehan AG, Painter JE, Bell GD, et al. Determination of Large Bowel Length and Loop Complexity in Patients with Acromegaly Undergoing Screening Colonoscopy. Clin Endocrinol. 2005; 62(3): 323–330. DOI https://doi.org/10.1111/j.1365-2265.2005.02217.x.
Wassenaar MJE, Cazemier M, Biermasz NR, et al. Acromegaly Is Associated with an Increased Prevalence of Colonic Diverticula: A Case-Control Study. J Clin Endocrinol Metab. 2010; 95(5): 2073–2079. DOI https://doi.org/10.1210/jc.2009-1714.
Dutta P, Bhansali A, Vaiphei K, et al. Colonic Neoplasia in Acromegaly: Increased Proliferation or Deceased Apoptosis? Pituitary. 2012; 15(2): 166–173. DOI https://doi.org/10.1007/s11102-011-0300-9.
Dworakowska D, Gueorguiev M, Kelly P, et al. Repeated Colonoscopic Screening of Patients with Acromegaly: 15-Year Experience Identifies Those at Risk of New Colonic Neoplasia and Allows for Effective Screening Guidelines. Eur J Endocrinol. 2010; 163(1): 21–28. DOI https://doi.org/10.1530/EJE-09-1080.
Lois K, Bukowczan J, Perros P, et al. The Role of Colonoscopic Screening in Acromegaly Revisited: Review of Current Literature and Practice Guidelines. Pituitary. 2015; 18(4): 568–574. DOI https://doi.org/10.1007/s11102-014-0586-5.
Klein I, Parveen G, Gavaler JS, et al. Colonic Polyps in Patients with Acromegaly. Ann Intern Med. 1982; 97(1): 27–30. DOI https://doi.org/10.7326/0003-4819-97-1-27.
Popovic V, Damjanovic S, Micic D, et al. Increased Incidence of Neoplasia in Patients with Pituitary Adenomas. Clin Endocrinol. 1998; 49(4): 441–445. DOI https://doi.org/10.1046/j.1365-2265.1998.00536.x.
Kamenický P, Mazziotti G, Lombès M, et al. Growth Hormone, Insulin-like Growth Factor-1, and the Kidney: Pathophysiological and Clinical Implications. Endocr Rev. 2014; 35(2): 234–281. DOI https://doi.org/10.1210/er.2013-1071.
Cheung NW, Boyages SC. Increased Incidence of Neoplasia in Females with Acromegaly. Clin Endocrinol 1997; 47(3): 323–327. DOI https://doi.org/10.1046/j.1365-2265.1997.2561053.x.
LeRoith D, Roberts CTJ. The Insulin-like Growth Factor System and Cancer. Cancer Lett. 2003; 195(2): 127–137. DOI https://doi.org/10.1016/s0304-3835(03)00159-9.
Kellerer M, von Eye Corleta H, Mühlhöfer A, et al. Insulin‐and Insulin‐like Growth‐factor‐I Receptor Tyrosine‐kinase Activities in Human Renal Carcinoma. Int J Cancer. 1995; 62(5): 501–507. DOI https://doi.org/10.1002/ijc.2910620502.
Blanck A, Assefaw-Redda Y, Eriksson LC, et al. Growth Hormone Administration after Treatment in the Resistant Hepatocyte Model Does Not Affect Progression of Rat Liver Carcinogenesis. Cancer Lett. 1994; 79(2): 193–198. DOI https://doi.org/10.1016/0304-3835(94)90260-7.
Jungwirth A, Schally A V, Halmos G, et al. Inhibition of the Growth of Caki-I Human Renal Adenocarcinoma in Vivo by Luteinizing Hormone-Releasing Hormone Antagonist Cetrorelix, Somatostatin Analog RC-160, and Bombesin Antagonist RC-3940-II. Cancer. 1998; 82(5): 909–917. DOI https://doi.org/10.1002/(sici)1097-0142(19980301)82:5<909::aid-cncr16>3.0.co;2-4.
Schally A V, Nagy A. New Approaches to Treatment of Various Cancers Based on Cytotoxic Analogs of LHRH, Somatostatin and Bombesin. Life Sci. 2003; 72(21): 2305–2320. DOI https://doi.org/10.1016/S0024-3205(03)00113-9.
Baris D, Gridley G, Ron E, et al. Acromegaly and Cancer Risk: A Cohort Study in Sweden and Denmark. Cancer Causes Control. 2002; 13(5): 395–400. DOI https://doi.org/10.1023/A:1015713732717.
Terzolo M, Reimondo G, Berchialla P, et al. Acromegaly Is Associated with Increased Cancer Risk: A Survey in Italy. Endocr-Relat Cancer. 2017; 24(9): 495–504. DOI https://doi.org/10.1530/ERC-16-0553.
Kauppinen-Mäkelin R, Sane T, Välimäki MJ, et al. Increased Cancer Incidence in Acromegaly - A Nationwide Survey. Clin Endocrinol. 2010; 72(2): 278–279. DOI https://doi.org/10.1111/j.1365-2265.2009.03619.x.
Fiebig HH, Dengler W, Hendriks HR. No Evidence of Tumor Growth Stimulation in Human Tumors in Vitro Following Treatment with Recombinant Human Growth Hormone. Anti-Cancer Drugs. 2000; 11(8): 659–664. DOI https://doi.org/10.1097/00001813-200009000-00011.
Mehls O, Wilton P, Lilien M, et al. Does Growth Hormone Treatment Affect the Risk of Post-Transplant Renal Cancer? Pediatr Nephrol. 2002; 17(12): 984–989. DOI https://doi.org/10.1007/s00467-002-0962-7.
Gianuzzi X, Palma-Ardiles G, Hernandez-Fernandez W, et al. Insulin Growth Factor (IGF) 1, IGF-Binding Proteins and Ovarian Cancer Risk: A Systematic Review and Meta-Analysis. Maturitas 2016; 94: 22–29. DOI https://doi.org/10.1016/j.maturitas.2016.08.012.
Wang Q, Bian CE, Peng H, et al. Association of circulating insulin-like growth factor 1 and insulin-like growth factor binding protein 3 with the risk of ovarian cancer: A systematic review and meta-analysis. Mol Clin Oncol. 2015; 3(3): 623–628. DOI https://doi.org/10.3892/mco.2015.516
Nabarro JD. Acromegaly. Clin Endocrinol (Oxf). 1987; 26(4): 481–512. DOI https://doi.org/10.1111/j.1365-2265.1987.tb00805.x.
Barzilay J, Heatley GJ, Cushing GW. Benign and Malignant Tumors in Patients with Acromegaly. Arch Intern Med. 1991; 151(8): 1629–1632. Retrieved from https://pubmed.ncbi.nlm.nih.gov/1678593/
Popovic V, Damjanovic S, Micic D, et al. Increased Incidence of Neoplasia in Patients with Pituitary Adenomas. The Pituitary Study Group. Clin Endocrinol (Oxf). 1998; 49(4): 441–445. DOI https://doi.org/10.1046/j.1365-2265.1998.00536.x.
Gullu BE, Celik O, Gazioglu N, et al. Thyroid cancer is the most common cancer associated with acromegaly. Pituitary. 2010; 13(3): 242–248. DOI https://doi.org/10.1007/s11102-010-0224-9.
Gupta P, Dutta P. Co-Occurrence of Acromegaly and Hematological Disorders: A Myth or Common Pathogenic Mechanism. Integr Med Int. 2017; 4(1–2): 94–100. DOI https://doi.org/10.1159/000478932.
Loeper S, Ezzat S. Acromegaly: Re-Thinking the Cancer Risk. Rev Endocr Metab Disord. 2008; 9(1): 41–58. DOI https://doi.org/10.1007/s11154-007-9063-z.
Au WY, Chow WS, Lam KS, et al. Acute Leukaemia in Acromegaly Patients. BrJ Haematol. 2000; 110(4): 871–873. DOI https://doi.org/10.1046/j.1365-2141.2000.02262.x.
Barbosa FRP, Vieira Neto L, Lima GAB, et al. Hematologic Neoplasias and Acromegaly. Pituitary. 2011; 14(4): 377–381. DOI https://doi.org/10.1007/s11102-009-0176-0.
James RA, Dymock RB. Osteosarcoma Associated with Acromegaly: A Case Report. Pathology. 1976; 8(2): 157–159. DOI https://doi.org/10.3109/00313027609094442.
Mortensen A, Bojsen-Møller M, Rasmussen P. Fibrous Dysplasia of the Skull with Acromegaly and Sarcomatous Transformation - Two Cases with a Review of the Literature. J Neuro-Oncol. 1989; 7(1): 25–29. DOI https://doi.org/10.1007/BF00149375.
Lima GAB, Gomes EMS, Nunes RC, et al. Osteosarcoma and Acromegaly: A Case Report and Review of the Literature. J Endocrinol Invest. 2006; 29(11): 1006–1011. DOI https://doi.org/10.1007/BF03349215.
Choi N, Kim S, Cho J, et al. Exponentially Growing Osteosarcoma of Mandible with Acromegaly. Head Neck. 2016; 38(6): E2432–E2436. DOI https://doi.org/10.1002/hed.24394.
Fuchs B, Pritchard DJ. Etiology of Osteosarcoma. Clin Orthop Relat Res. 2002; 397: 40–52. DOI https://doi.org/10.1097/00003086-200204000-00007.
Brunner JE, Johnson CC, Zafar S, et al. Colon cancer and polyps in acromegaly: increased risk associated with family history of colon cancer. Clin Endocrinol. 1990; 32(1): 65–71. DOI https://doi.org/10.1111/j.1365-2265.1990.tb03751.x.
Ma J, Pollak MN, Giovannucci E, et al. Prospective Study of Colorectal Cancer Risk in Men and Plasma Levels of Insulin-like Growth Factor (IGF)-I and IGF-Binding Protein-3. J Nat Cancer Inst. 1999; 91(7): 620–625. DOI https://doi.org/10.1093/jnci/91.7.620.
Baris D, Gridley G, Ron E, et al. Acromegaly and Cancer Risk: A Cohort Study in Sweden and Denmark. Cancer Causes Control. 2002; 13(5): 395–400. DOI https://doi.org/10.1023/A:1015713732717.
Gadelha MR, Kasuki L, Lim DST, et al. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endo Rev. 2019; 40(1): 268–332. DOI https://doi.org/10.1210/er.2018-00115.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Katarzyna Laszczak, Sylwiusz Niedobylski, Konrad Warchoł, Maciej Dobosz, Olaf Pachciński
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 476
Number of citations: 0