Relationships between geomagnetic Ар-indeх and parameters of the acupuncture points as well as neuroendocrine-immune complex in patients with its dysfunction
DOI:
https://doi.org/10.12775/JEHS.2021.11.12.034Keywords
geomagnetic Ap-index, acupuncture points, neuroendocrine-immune complex, relationships, humansAbstract
Background. Back in 1990, YuP Limansky hypothesized acupuncture points (AP) as polymodal receptors of the ecoceptive sensitivity system. In the process of hypothesis development in 2003 an existence of separate functional system of regulation of electromagnetic balance of organism has been substantiated and a working conception of light therapy has been formulated. In line with this hypothesis, we set out to analyze the relationships between the disturbances of the geomagnetic field (Ap-index) and the electrical conductivity of a number of AP, on the one hand, and the parameters of the neuroendocrine-immune complex in patients with its dysfunction, on the other. Material and methods. The object of observation were 21 men (24-63 y) and 20 women (30-72 y) with neuroendocrine-immune complex dysfunction. Each patient was tested twice with an interval of 4 days. Retrospectively we recorded the geomagnetic Ap-Index on the day of testing and during the previous 7 days, using resource https://www.spaceweatherlive.com/. Recorded the electrical conductivity of 9 pairs of AP, electroencephalogram (EEG) and heart rate variability (HRV) parameters, determined the plasma level of cortisol, triiodothyronine and testosterone, the content of lymphocytes expressing CD3, CD4, CD25, CD8, CD22 and CD56 receptors, the serum level of circulating immune complexes, immunoglobulins classes M, G, A as well as C-reactive protein, IL-1β and IL-6. The state of phagocytic function of neutrophils estimated by microbial count and phagocytic and killing indices against Staphylococcus aureus and Escherichia coli. Results. During the week, the average level of Ap-index ranged from 7 to 13 nT. Maximum coefficients of multiple correlation with APs parameters were detected for Ap-index on 6 day before (R=0,552) and on the day of testing (R=0,470), with EEG parameters on the eve of registration (R=0,708) and on 6 day before its (R=0,685), with immunity parameters on the eve of blood sampling (R=0,768) and on 5 day before its (R=0,758), with HRV&Hormonal parameters on 2 (R=0,506) and 7 (R=0,403) days before testing. The canonical correlation between Ap-indices for 7 days before and on the day of testing, and the parameters APs is 0,661; EEG parameters is 0,886; HRV&Hormonal parameters is 0,766 and immunity parameters is 0,921. APs parameter are closely related to the EEG (R=0,997) and HRV&Hormonal parameters (R=0,740). In turn, the immune parameters are closely related to the EEG (R=0,944) and HRV&Hormonal parameters (R=0,714). Conclusion. Disturbances of the geomagnetic field (Ap-index) causes a significant immediate modulating effect on the parameters of neuroendocrine-immune complex, apparently through acupuncture points as polymodal receptors of the ecoceptive sensitivity system.
References
Chizhevsky AL. The Terrestrial Echo of Solar Storms. Moscow. Mysl; 1976: 366. [in Russian].
Halberg F, Cornélissen G, Otsuka K, Watanabe Y, Katinas GS, Burioka N, Delyukov A, Gorgo Y et al. Cross-spectrally coherent ~10.5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuro Endocrinology Letters. 2000; 21(3): 233-258.
Zhadin MN. Review of Russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001; 22(1): 27-45.
Dubrov A. The Geomagnetic Field and Life: Geomagnetobiology. Springer; 2013.
Hanslmeier A. The Sun and Space Weather. 2. Dordrecht: Springer; 2007.
Limansky YuP. Hypothesis about acupuncture points as polymodal receptors of the ecoceptive sensitivity system. Fiziol Zhurn. 1990; 36(4): 115-121. [in Russian].
Gulyar SA, Limansky YuP. Functional system of regulation of electromagnetic balance of organism: mechanisms of primary reception of electromagnetic waves of optical range. Fiziol Zhurn. 2003; 49(2): 35-44. [in Ukrainian].
Popovych IL, Gozhenko AI, Badiuk NS, Napierata M, Muszkieta R, Zukow W, Yanchij RI, Lapovets’ NYe, Lapovets’ LYe, Tserkovnyuk RG, Akimova VM, Nahurna YV, Martianova OI, Vivchar RYa, Chendey IV, Ruzhylo SV. Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies. Journal of Education, Health and Sport. 2021; 11(3): 77-90.
Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of ESC and NASPE. Circulation. 1996; 93(5): 1043-1065.
Berntson GG, Bigger JT jr, Eckberg DL, Grossman P, Kaufman PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, Van der Molen MW. Heart Rate Variability: Origines, methods, and interpretive caveats. Psychophysiology. 1997; 34: 623-648.
Baevskiy RM, Ivanov GG. Heart Rate Variability: theoretical aspects and possibilities of clinical application. Ultrazvukovaya i funktsionalnaya diagnostika. 2001; 3: 106-127. [in Russian].
Popadynets’ OO, Gozhenko AI, Zukow W, Popovych IL. Peculiarities of spectral parameters of EEG, HRV and routine parameters of immunity in patients with various levels of the entropy of EEG, HRV, immunocytogram and leukocytogram. Journal of Education, Health and Sport. 2019; 9(8): 617-636.
Popadynets’ O, Gozhenko A, Badyuk N, Popovych I, Skaliy A, Hagner-Derengowska M et al. Interpersonal differences caused by adaptogen changes in entropies of EEG, HRV, immunocytogram, and leukocytogram. Journal of Physical Education and Sport. 2020; 20(Suppl. 2): 982-999.
Lapovets’ LYe, Lutsyk BD. Laboratory Immunology [in Ukrainian]. Kyiv; 2004: 173.
Douglas SD, Quie PG. Investigation of Phagocytes in Disease. Churchil; 1981: 110.
Kul’chyns’kyi AB, Kovbasnyuk MM, Kyjenko VM., Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016; 6(10): 377-401.
Popovych IL, Kul’chyns’kyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA. Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(2): 135-156.
Gozhenko AI, Zukow W, Polovynko IS, Zajats LM, Yanchij RI, Portnichenko VI, Popovych IL. Individual Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. RSW. UMK. Radom. Torun; 2019: 200.
Gozhenko АІ, Korda MM, Popadynets’ OO, Popovych IL. Entropy, Harmony, Synchronization and their Neuro-endocrine-immune Correlates. Odesa. Feniks; 2021: 232. [in Ukrainian].
Popоvych IL. Information effects of bioactive water Naftyssya in rats: modulation entropic, prevention desynchronizing and limitation of disharmonizing actions water immersion stress for information components of neuro-endocrine-immune system and metabolism, which correlates with gastroprotective effect. Medical Hydrology and Rehabilitation. 2007; 5(3): 50-70. [in Ukrainian].
Tserkovniuk, R., Yanchij, R., Plyska, O., Kovbasnyuk, M., Chendey, I., Hagner-Derengowska, M., Zukow, X., Kałużny, K., Muszkieta, R., Zukow, W. Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with neuroendocrine-immune complex dysfunction in former sportsmen. Journal of Education, Health and Sport. 2011; 11(7): 335–348. https://doi.org/10.12775/JEHS.2021.11.07.034
Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med. 2014; 3(2): 40-55. doi:10.7453/gahmj.2014.008.
Babayev ES, Allahverdiyeva AA. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: some of results of the Azerbijani studies. Advances in Space Research. 2007; 40: 1941–1951.
Mulligan BP, Hunter MD, Persinger MA. Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: replication of the Azerbaijani studies. Advances in Space Research. 2010; 45: 940–948.
Novik OB, Smirnov FA. Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer. Biofizika. 2013;58(3):554-560.
Baevsky RM, Petrov VM, Cornelissen G, Halberg F, Orth-Gomer K, Akerstedt T, Otsuka K, Breus T, Siegelova J, Dusek J, Fiser B. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno). 1997; 70(4–5): 201–206.
McCraty, R., Atkinson, M., Stolc, V., Alabdulgader, A. A., Vainoras, A., & Ragulskis, M. (2017). Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects. International journal of environmental research and public health, 14(7), 770. https://doi.org/10.3390/ijerph14070770
Persinger, M.A., Richards, P.M. Vestibular experiences of humans during brief periods of partial sensory deprivation are enhanced when daily geomagnetic activity exceeds 15–20 nT. Neuroscience Letters 194, 69–72, 1995
Cherry, N. Schumann resonance, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Natural Hazards 26, 279–331, 2002.
Schlegel, K., Fuellekrug, K. Schumann resonance parameter changesduring high-energy particle precipitation. Journal of Geophysical Research 104, 10,111–10,118, 1999
Koenig, H.L., Krueger, A.P., Lang, S., Sonning, W. Biologic Effects of Environmental Electromagnetism. Springer-Verlag, New York, 1981.
Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340,2002.
Gloor, P. The Temporal Lobe and Limbic System. Oxford, New York,1997.
Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988-1001. doi:10.1016/s0025-6196(12)62272-1
Palma, J. A., and Benarroch, E. E. (2014). Neural control of the heart: recent concepts and clinical correlations. Neurology 83, 261–271.doi: 10.1212/WNL.0000000000000605
Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev. 2009; 33(2): 81-88. doi:10.1016/j.neubiorev.2008.08.004
Verberne AJ. Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat. Am J Physiol. 1996; 270 (4Pt2): R713-R719. doi:10.1152/ajpregu.1996.270.4.R713
Verberne AJ, Lam W, Owens NC, Sartor D. Supramedullary modulation of sympathetic vasomotor function. Clin Exp Pharmacol Physiol. 1997;24(9-10):748-754. doi:10.1111/j.1440-1681.1997.tb02126.x
Guo, C. C., Sturm, V. E., Zhou, J., Gennatas, E. D., Trujillo, A. J., Hua, A. Y.,et al. (2016). Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc. Natl. Acad. Sci. U.S.A.113, E2430–E2439. doi: 10.1073/pnas.1509184113
Winkelmann T, Thayer JF, Pohlack S, Nees F, Grimm O, Flor H. Structural brain correlates of heart rate variability in a healthy young adult population. Brain Struct Funct. 2017;222(2):1061-1068. doi:10.1007/s00429-016-1185-1
Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. III, and Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 36, 747–756. doi: 10.1016/j.neubiorev.2011.11.009
Yoo HJ, Thayer JF, Greening S, et al. Brain structural concomitants of resting state heart rate variability in the young and old: evidence from two independent samples. Brain Struct Funct. 2018;223(2):727-737. doi:10.1007/s00429-017-1519-7
Carnevali L, Koenig J, Sgoifo A, Ottaviani C. Autonomic and Brain Morphological Predictors of Stress Resilience Front Neurosci. 2018; 12: 228.
Popovych IL, Lukovych YuS, Korolyshyn TA, Barylyak LG, Kovalska LB, Zukow W. Relationship between the parameters heart rate variability and background EEG activity in healthy men. Journal of Health Sciences. 2013; 3(4): 217-240.
Popovych IL, Kozyavkina OV, Kozyavkina NV, Korolyshyn TA, Lukovych YuS, Barylyak LG. Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology. 2014; 46(2): 139-148.
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007; 117(2): 289-296.
Thayer JF, Sternberg EM. Neural aspects of immunomodulation: Focus on the vagus nerve. Brain Behav Immun. 2010; 24(8): 1223-1228.
Kul’chyns’kyi AB, Gozhenko AI, Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 3. Correlations between parameters EEG, HRV and Immunogram. Journal of Education, Health and Sport. 2017; 7(3): 53-71.
Kul’chyns’kyi AB, Kyjenko VM, Zukow W, Popovych IL. Causal neuro-immune relationships at patients with chronic pyelonephritis and cholecystitis. Correlations between parameters EEG, HRV and white blood cell count. Open Medicine. 2017; 12(1): 201-213.
Kul’chyns’kyi AB, Zukow W, Korolyshyn TA, Popovych IL. Interrelations between changes in parameters of HRV, EEG and humoral immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(9): 439-459.
Popovych IL, Kul’chyns’kyi AB, Korolyshyn TA, Zukow W. Interrelations between changes in parameters of HRV, EEG and cellular immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(10): 11-23.
Nordmann G.C., Hochstoeger T., Keays D.A. Unsolved mysteries: magnetoreception - A sense without a receptor. PLoS Biol. 2017;15(10): e2003234.
Gegear, R. J., Casselman, A., Waddell, S., Reppert, S. M. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature, 454(7207), 1014–1018. https://doi.org/10.1038/nature07183
Foley, L., Gegear, R., Reppert, S. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2, 356 (2011). https://doi.org/10.1038/ncomms1364
Zaporozhan V, Ponomarenko A. Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology. Int J Environ Res Public Health. 2010; 7(3): 938-965. doi:10.3390/ijerph7030938.
Hammad, M., Albaqami, M., Pooam, M., Kernevez, E., Witczak, J., Ritz, T., Martino, C., & Ahmad, M. (2020). Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochemical & photobiological sciences, 19(3), 341–352. https://doi.org/10.1039/c9pp00469f
Cifra, M., Apollonio, F., Liberti, M., García-Sánchez, T., Mir, L. M. (2021). Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. International journal of biometeorology, 65(1), 59–67. https://doi.org/10.1007/s00484-020-01885-1
Wan, G., Hayden, A. N., Iiams, S. E., & Merlin, C. (2021). Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nature communications, 12(1), 771. https://doi.org/10.1038/s41467-021-21002-z
Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA. 1992; 89(16): 7683–7687. doi: 10.1073 /pnas.89. 16. 7683.
Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JC, Kirschvink SJ. Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics. 1992; Suppl 1: 101–113.
Kirschvink J.L., Walker M.M., Diebel C.E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 2001;11(4):462–467.
Winklhofer M., Kirschvink J.L. A quantitative assessment of torque-transducer models for magnetoreception. J.R. Soc. Interface. 2010;7(suppl_2): S273–S289.
Gilder S.A., Wack M., Kaub L., Roud S.C., Petersen N., Heinsen H. et al. Distribution of magnetic remanence carriers in the human brain. Sci. Rep. 2018;8(1):1–9.
Simko M, Mattsson MO. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem. 2004; 93(1): 83–92. doi: 10.1002/jcb.20198.
Rosado, M. M., Simkó, M., Mattsson, M. O., & Pioli, C. (2018). Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Frontiers in public health, 6, 85. https://doi.org/10.3389/fpubh.2018.00085
Selmaoui B, Bogdan A, Auzeby A, Lambrozo J, Touitou Y. Acute exposure to 50 Hz magnetic field does not affect hematologic or immunologic functions in healthy young men: a circadian study. Bioelectromagnetics. 1996;17(5):364-372.
Selmaoui B, Lambrozo J, Sackett-Lundeen L, Haus E, Touitou Y. Acute exposure to 50-Hz magnetic fields increases interleukin-6 in young healthy men. J Clin Immunol (2011) 31(6):1105–11. doi:10.1007/s10875-011-9558-y
Gorgo YuP, Greckiy IO, Demydova OI. The use of luminos bacteria Photobacterium phosphoreum as a bioindicator of geomagnetic activity. Innov Biosyst Bioeng. 2018; 2(4): 271-277. doi:10.20535/ibb.2018.2.4.151459.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 R. Tserkovniuk, A. Gozhenko, T. Korolyshyn, M. Kovbasnyuk, V. Hubyts’kyi, V. Kikhtan, V. Fil, A. Anchev, W. Zukow, R. Yanchij, I. Popovych
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 442
Number of citations: 0