Relationships between geomagnetic Ар-indeх and HRV and endocrine parameters in patients with dysfunction of the neuroendocrine-immune complex
DOI:
https://doi.org/10.12775/JEHS.2021.11.11.029Keywords
geomagnetic Ap-index, HRV, cortisol, triiodothyronine, testosterone, relationships, humansAbstract
Background. Recently, on the example of two cohort of patients, we found that disturbances of the geomagnetic field cause a significant immediate modulating effect on the level of immune parameters in the blood. The data available in the literature give grounds for assumptions about the direct effect of disturbances of the geomagnetic field on immunocytes, and indirectly, through immunotropic neurotransmitters and hormones. Our hypothesis is as follows. Disturbances of the geomagnetic field are perceived by acupuncture points. The information obtained is transmitted to neurons and endocrinocytes, the mediators of which, in turn, affect immunocytes. The purpose of this study is to test this hypothesis. Material and methods. The object of observation were 21 men (24-63 y) and 20 women (30-72 y) with neuroendocrine-immune complex dysfunction. Each patient was tested twice with an interval of 4 days. Retrospectively we recorded the geomagnetic Ap-Index on the day of testing and during the previous 7 days, using resource https://www.spaceweatherlive.com/. Recorded the heart rate variability (HRV) parameters, determined the plasma level of cortisol, triiodothyronine and testosterone. Results. During the week, the average level of Ap-index ranged from 7 to 13 nT. Maximum coefficients of multiple correlation with HRV&Hormonal parameters were detected for Ap-index on 2 (R=0,506) and 7 (R=0,403) days before testing. The canonical correlation between Ap-indices for 7 days before and on the day of testing, and the HRV&Hormonal parameters is 0,766. In turn, the immune parameters are closely related to the HRV&Hormonal parameters (R=0,714). Conclusion. Disturbances of the geomagnetic field (Ap-index) causes a significant immediate modulating effect on the immune, HRV and endocrine parameters, apparently through acupuncture points as polymodal receptors of the ecoceptive sensitivity system.
References
Popovych, I.L., Gozhenko, A.I., Badiuk, N.S., Napierata, M., Muszkieta, R., Zukow, W., Yanchij, R.I., Lapovets’, N.Ye., Lapovets’, L.Ye., Tserkovniuk, R.G., Akimova, V.M., Nahurna, Y.V., Martianova, O.I., Vivchar, R.Ya., Chendey, I.V., Ruzhylo, S.V. (2021). Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies. Journal of Education, Health and Sport, 11(3):77-90.
Tserkovniuk, R., Yanchij, R., Plyska, O., Kovbasnyuk, M., Chendey, I., Hagner-Derengowska, M., Zukow, X., Kałużny, K., Muszkieta, R., Zukow, W. (2011). Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with neuroendocrine-immune complex dysfunction in former sportsmen. Journal of Education, Health and Sport. 11(7): 335–348. https://doi.org/10.12775/JEHS.2021.11.07.034
Limansky, Yu. P. Hypothesis about acupuncture points as polymodal receptors of the ecoceptive sensitivity system. (1990). Fiziol Zhurn,36(4):115-121. [in Russian].
Gulyar, S.A., Limansky, Yu.P. (2003). Functional system of regulation of electromagnetic balance of organism: mechanisms of primary reception of electromagnetic waves of optical range. Fiziol Zhurn,49(2):35-44. [in Ukrainian].
Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of ESC and NASPE. (1996). Circulation,93(5):1043-1065.
Berntson, G. G., Bigger, J. T. jr, Eckberg, D. L., Grossman, P., Kaufman, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., Van der Molen, M. W. (1997). Heart Rate Variability: Origines, methods, and interpretive caveats. Psychophysiology,34:623-648.
Baevsky, R. M., Ivanov, G. G. (2001). Heart Rate Variability: theoretical aspects and possibilities of clinical application. Ultrazvukovaya i funktsionalnaya diagnostika,3:106-127. [in Russian].
Babayev, E. S., Allahverdiyeva, A. A. (2007). Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: some of results of the Azerbijani studies. Advances in Space Research,40:1941–1951.
Mulligan, B. P., Hunter, M. D., Persinger, M. A. (2010). Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: replication of the Azerbaijani studies. Advances in Space Research,45:940–948.
Novik, O. B., Smirnov, F. A. (2013). Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer. Biofizika,58(3):554-560.
Baevsky, R. M., Petrov, V. M., Cornelissen, G., Halberg, F., Orth-Gomer, K., Akerstedt, T., Otsuka, K., Breus, T., Siegelova, J., Dusek, J., Fiser, B. (1997). Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno),70(4–5):201–206.
McCraty, R., Atkinson, M., Stolc, V., Alabdulgader, A. A., Vainoras, A., & Ragulskis, M. (2017). Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects. International journal of environmental research and public health, 14(7), 770. https://doi.org/10.3390/ijerph14070770
Benarroch, E. E. The central autonomic network: functional organization, dysfunction, and perspective. (1993). Mayo Clin Proc, 68(10):988-1001. doi:10.1016/s0025-6196(12)62272-1
Palma, J. A., Benarroch, E. E. (2014). Neural control of the heart: recent concepts and clinical correlations. Neurology,83,261–271.doi: 10.1212/WNL.0000000000000605
Thayer, J. F., Lane, R. D. (2009). Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev,33(2):81-88. doi:10.1016/j.neubiorev. 2008.08.004
Verberne, A. J. (1996). Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat. Am J Physiol,270,(4Pt2):R713-R719. doi:10.1152/ajpregu.1996.270.4.R713
Verberne, A. J., Lam, W., Owens, N. C., Sartor, D. (1997). Supramedullary modulation of sympathetic vasomotor function. Clin Exp Pharmacol Physiol,24(9-10):748-754. doi:10.1111/j.1440-1681.1997. tb02126.x
Guo, C. C., Sturm, V. E., Zhou, J., Gennatas, E. D., Trujillo, A. J., Hua, A. Y., et al. (2016). Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc Natl Acad Sci USA,113,E2430–E2439. doi: 10.1073/pnas.1509184113
Winkelmann, T., Thayer, J. F., Pohlack, S., Nees, F., Grimm, O., Flor, H. (2017). Structural brain correlates of heart rate variability in a healthy young adult population. Brain Struct Funct,222(2):1061-1068. doi:10.1007/s00429-016-1185-1
Thayer, J. F., Ǻhs, F., Fredrikson, M., Sollers, J. J. III, Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev, 36, 747–756. doi: 10.1016/j.neubiorev.2011.11.009
Yoo, H. J., Thayer, J. F., Greening, S., Lee, T.-H., Ponzio, A., Min, J., Sakaki, M., Nga, L., Mather, M., Koeniget, J. (2018). Brain structural concomitants of resting state heart rate variability in the young and old: evidence from two independent samples. Brain Struct Funct,223(2):727-737. doi:10.1007/s00429-017-1519-7
Carnevali, L., Koenig, J., Sgoifo, A., Ottaviani, C. (2018). Autonomic and Brain Morphological Predictors of Stress Resilience. Front Neurosci,12: 228.
Ho, M. W., Knight, D. P. (1998). The acupuncture system and the liquid crystalline collagen fibers of the connective tissues. Am J Chin Med,26(3-4):251-263.
Langevin, H. M. (2006). Connective tissue: a body-wide signaling network? Med Hypotheses,66(6):1074-1077.
Tracey, K. J. (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest,117(2):289-296.
Thayer, J.F., Sternberg, E. M. (2010). Neural aspects of immunomodulation: Focus on the vagus nerve. Brain Behav Immun,24(8):1223-1228.
Popovych, I. L., Lukovych, Yu. S., Korolyshyn, T.A., Barylyak, L.G., Kovalska, L.B., Zukow, W. (2013). Relationship between the parameters heart rate variability and background EEG activity in healthy men. Journal of Health Sciences,3(4):217-240.
Popovych, I. L., Kozyavkina, O. V., Kozyavkina, N. V., Korolyshyn, T. A., Lukovych, Yu. S., Barylyak, L. G. (2014). Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology,46(2):139-148.
Popovych, I. L., Kul’chyns’kyi, A. B., Gozhenko, A. I., Zukow, W., Kovbasnyuk, M. M., Korolyshyn, T. A. (2018). Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport,8(2):135-156.
Babelyuk, V. Ye., Dubkowa, G. I., Korolyshyn, T. A., Holubinka, S. M., Dobrovolskyi, Y. G., Zukow, W., Popovych, I. L. (2017). Operator of Kyokushin Karate via Kates increases synaptic efficacy in the rat Hippocampus, decreases C3-θ-rhythm SPD and HRV Vagal markers, increases virtual Chakras Energy in the healthy humans as well as luminosity of distilled water in vitro. Preliminary communication. JPES,17(1):383-393.
Kul’chyns’kyi, A. B., Kyjenko, V. M., Zukow, W., Popovych, I. L. (2017). Causal neuro-immune relationships at patients with chronic pyelonephritis and cholecystitis. Correlations between parameters EEG, HRV and white blood cell count. Open Medicine,12(1):201-213.
Gozhenko, A. I., Zukow, W., Polovynko, I. S., Zajats, L. M., Yanchij, R. I., Portnichenko, V. I., Popovych, I. L. (2019). Individual Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. RSW. UMK. Radom. Torun; 200.
Gozhenko, А. І., Korda, M. M., Popadynets’, O. O., Popovych, I. L. (2021). Entropy, Harmony, Synchronization and their Neuro-endocrine-immune Correlates. Odesa. Feniks; 232. [in Ukrainian].
Nordmann, G. C., Hochstoeger, T., Keays D. A. (2017). Unsolved mysteries: magnetoreception - A sense without a receptor. PLoS Biol,15(10):e2003234.
Gegear, R. J., Casselman, A., Waddell, S., Reppert, S. M. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature,454(7207),1014–1018. https://doi.org/10.1038/nature07183
Zaporozhan, V., Ponomarenko, A. (2010). Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology. Int J Environ Res Public Health,7(3):938-965. doi:10.3390/ijerph7030938.
Foley, L., Gegear, R., Reppert, S. (2011). Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun,2, 356. https://doi.org/10.1038/ncomms1364
Hammad, M., Albaqami, M., Pooam, M., Kernevez, E., Witczak, J., Ritz, T., Martino, C., & Ahmad, M. (2020). Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochemical & photobiological sciences,19(3),341–352. https://doi.org/10.1039/c9pp00469f
Cifra, M., Apollonio, F., Liberti, M., García-Sánchez, T., Mir, L. M. (2021). Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. International journal of biometeorology,65(1),59–67. https://doi.org/10.1007/s00484-020-01885-1
Wan, G., Hayden, A. N., Iiams, S. E., Merlin, C. (2021). Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nature communications,12(1), 771. https://doi.org/10.1038/s41467-021-21002-z
Kirschvink, J. L., Walker, M. M., Diebel, C. E. (2001). Magnetite-based magnetoreception. Curr Opin Neurobiol,11(4):462–467.
Winklhofer, M., Kirschvink, J. L. (2010). A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface,7(Suppl 2):S273–S289.
Gilder, S. A., Wack, M., Kaub, L., Roud, S. C., Petersen, N., Heinsen, H., et al. (2018). Distribution of magnetic remanence carriers in the human brain. Sci Rep,8(1):1–9.
Simko, M., Mattsson, M. O. (2004). Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem,93(1):83–92. doi: 10.1002/jcb.20198.
Rosado, M. M., Simkó, M., Mattsson, M. O., Pioli, C. (2018). Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Frontiers in public health, 6, 85. https://doi.org/10.3389/fpubh.2018.00085
Selmaoui, B., Bogdan, A., Auzeby, A., Lambrozo, J., Touitou, Y. 1996. Acute exposure to 50 Hz magnetic field does not affect hematologic or immunologic functions in healthy young men: a circadian study. Bioelectromagnetics.17(5):364-372.
Selmaoui, B., Lambrozo, J., Sackett-Lundeen, L., Haus, E., Touitou, Y. (2011). Acute exposure to 50-Hz magnetic fields increases interleukin-6 in young healthy men. J Clin Immunol,31(6):1105–11. doi:10.1007/s10875-011-9558-y
Gorgo, Yu.P., Greckiy, I.O., Demydova, O.I. (2018). The use of luminos bacteria Photobacterium phosphoreum as a bioindicator of geomagnetic activity. Innov Biosyst Bioeng, 2(4):271-277. doi:10.20535/ibb.2018.2.4.151459.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ruslan Tserkovniuk, Anatoliy Gozhenko, Tetyana Korolyshyn, Sofiya Ruzhylo, Volodymyr Kikhtan, Vitalij Fil, Anatoliy Anchev; Walery Zukow; Roman Yanchij, Igor Popovych
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 286
Number of citations: 0