Medullary vasomotor center: a modern view of the structure, function and its role in arterial hypertension pathogenesis
DOI:
https://doi.org/10.12775/JEHS.2021.11.08.055Keywords
brainstem, baroreflex, dorsal vagal complex, caudal ventrolateral medulla, rostral ventrolateral medulla, locus coeruleus, arterial hypertensionAbstract
The medullary centers of blood pressure regulation have been in the field of vision of both physiologists and doctors for a very long period of time. This is mainly due to the abundance of structures and interstructural interactions in the brain stem, involved in maintaining blood pressure. Advances in research technology open new opportunities these days to look at this problem from a different angle. Moreover, research of medullary centers of blood pressure regulation will make it possible to understand better the mechanisms of persistent increase in blood pressure, which will create the preconditions for the formation of new pathogenetically substantiated therapeutic approaches in the treatment of such a widespread and dangerous pathology as arterial hypertension. Therefore, the aim of this work was to analyze modern views about the structure and composition of the medullary vasomotor center, its functions and its role in the arterial hypertension development. To achieve this goal, the search by keywords: arterial hypertension, baroreflex, NTS, DMN, RVLM, CVLM, CPA, SHR, LC and analysis of scientific articles from the databases of search engines Google Scholar, Web of Science, Pub Med was done. Conclusions: 1. The analysis of literature sources showed that the concept of "medullar vasomotor center" includes a number of brainstem formations, the most studied of which are the structures of the dorsal complex of the vagus nerve (the nucleus of the solitary tract, the dorsal motor nucleus, area postrema), the rostral and caudal ventrolateral regions of medulla, caudal pressor area, noradrenergic structures of the brainstem, in particular the locus coeruleus, as the biggest of them. 2. According to literary sources, arterial hypertension is accompanied by the changes in the morphofunctional state of the above-mentioned structures. The most common mechanisms are violation of the neurotransmitter composition within the structure and the neuroinflammatory process.
References
Campos, R. R., Carillo, B. D. A., Oliveira-Sales, E. B. D., Silva, A. M. D., Silva, N. F. D., Futuro Neto, H. A., & Bergamaschi, C. T. (2008). Role of the caudal pressor area in the regulation of sympathetic vasomotor tone. Brazilian Journal of Medical and Biological Research, 41(7), 557-562.
Cyrlin, V., & Hrustalev, R. (2001). Rol` adrenergicheskikh mekhanizmov mozgovogo stvola i spinnogo mozga v tsentral`noi regulyatsii krovobrashenia. Vestnik Aritmologii, 22.
Grassi, G., Mark, A., & Esler, M. (2015). The sympathetic nervous system alterations in human hypertension. Circulation research, 116(6), 976-990. DOI: 10.1161/CIRCRESAHA.116.303604
Bakris, G., Ali, W., & Parati, G. (2019). ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. Journal of the American College of Cardiology, 73(23), 3018-3026.
Zhilyaiev, S., Platonova, T., Alekseeva, O., Nikitina, E., & Demchenko, I. (2019). Adaptivnie mekchanizmi baroreflectornoi regulyatsii serdechno-sosudistoi sistemy pri ekstremal`noi giperoksii. Zurnal Evolutsionnoi Biokhimii I Fiziologii, 55(5), 316-323.
Man, T., Tegegne, B. S., van Roon, A. M., Rosmalen, J. G., Nolte, I. M., Snieder, H., & Riese, H. (2021). Spontaneous baroreflex sensitivity and its association with age, sex, obesity indices and hypertension: a population study. American journal of hypertension.
Grilletti, J. V. F., Scapini, K. B., Bernardes, N., Spadari, J., Bigongiari, A., Mazuchi, F. D. A., ... & De Angelis, K. (2018). Impaired baroreflex sensitivity and increased systolic blood pressure variability in chronic post-ischemic stroke. Clinics, 73.
Koziolek, M., Beige, J., Wallbach, M., Zenker, D., Henning, G., Halbach, M., ... & Reuter, H. (2017). Baroreceptor activation therapy for therapy-resistant hypertension: indications and patient selection: recommendations of the BAT consensus group 2017. Der Internist, 58(10), 1114-1123.
Sved, A. F., Imaizumi, T. S. U. T. O. M. I., Talman, W. T., & Reis, D. J. (1985). Vasopressin contributes to hypertension caused by nucleus tractus solitarius lesions. Hypertension, 7(2), 262-267. 10.1161/01.HYP.7.2.262.
Danukalo, M. V., & Hancheva, O. V. (2020). Isoform profile of NOS enzyme in structure of rats’ solitary-vagal complex in arterial hypertension of various origin. DOI: 10.14739/2409-2932.2020.1.198141
Hosford, P. S., Millar, J., Ramage, A. G., & Marina, N. (2017). Abnormal oxygen homeostasis in the nucleus tractus solitarii of the spontaneously hypertensive rat. Experimental physiology, 102(4), 389-396. DOI: 10.1113/EP086023
Foulquier, S. (2020). Brain perivascular macrophages: connecting inflammation to autonomic activity in hypertension. Hypertension Research, 43(2), 148-150. DOI: 10.1038/s41440-019-0359-7
Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats / D. L. Daubert, M McCowan, B Erdos et al. The Journal of physiology. 2012. Vol. 590. № 19. P. 4881-4895. DOI: 10.1113/jphysiol.2012.232314
Van Kleef, M. E., Visseren, F. L., Vernooij, J. W., Nathoe, H. M., Cramer, M. J. M., Bemelmans, R. H., ... & SMART-Study Group. (2018). Four ECG left ventricular hypertrophy criteria and the risk of cardiovascular events and mortality in patients with vascular disease. Journal of hypertension, 36(9), 1865-1873. DOI: 10.1097/HJH.0000000000001871
Gorky, J., Vadigepalli, R., & Schwaber, J. (2018). Transcriptional Profiling of Laser Captured Neurons in the Dorsal Motor Nucleus of the vagus in Response to Ischemic Heart Failure. The FASEB Journal, 32, 580-11.
Corbett, E. K., Mary, D. A., McWilliam, P. N., & Batten, T. F. (2007). Age‐related loss of cardiac vagal preganglionic neurones in spontaneously hypertensive rats. Experimental physiology, 92(6), 1005-1013. DOI: 10.1113/expphysiol.2007.038216
Krstew, E., Jarrott, B., & Lawrence, A. J. (1998). Autoradiographic visualisation of axonal transport of adenosine A1 receptors along the rat vagus nerve and characterisation of adenosine A1 receptor binding in the dorsal vagal complex of hypertensive and normotensive rats. Brain research, 802(1-2), 61-68. DOI: 10.1016/S0006-8993(98)00567-8
Ruchaya, P. J., Speretta, G. F., Blanch, G. T., Li, H., Sumners, C., Menani, J. V., ... & Colombari, D. S. (2016). Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides, 60, 29-36. DOI: 10.1016/j.npep.2016.06.006
Hood, W. S., Thunhorst, R. L., & Curtis, K. (2020, September). Neuronal activation in nucleus tractus solitarius and area postrema of young and aged female rats induced by hypotension. In Oklahoma State University Center for Health Sciences Research Day 2020.
Abukar, Y., Ramchandra, R., Hood, S. G., McKinley, M. J., Booth, L. C., Yao, S. T., & May, C. N. (2018). Increased cardiac sympathetic nerve activity in ovine heart failure is reduced by lesion of the area postrema, but not lamina terminalis. Basic research in cardiology, 113(5), 1-11.
Smith, P. M., Wang, S. J., & Ferguson, A. V. (2017). Hydrogen Sulfide Decreases Blood Pressure by Influencing the Excitability of Area Postrema Neurons. The FASEB Journal, 31, 1012-9.
Korim, W. S., Elsaafien, K., Basser, J. R., Setiadi, A., May, C. N., & Yao, S. T. (2019). In renovascular hypertension, TNF-α type-1 receptors in the area postrema mediate increases in cardiac and renal sympathetic nerve activity and blood pressure. Cardiovascular research, 115(6), 1092-1101.
Fink, G. D., Bruner, C. A., & Mangiapane, M. L. (1987). Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension, 9(4), 355-361.
Al Mwafy, M. E., El-Sawaf, M. E. S., Salem, M. F., & Naguib, Y. M. (2020). Effect of different diets on left ventricle and area postrema in adult male albino rats predisposed to prolonged intake of high salt. Tanta Medical Journal, 48(1), 28.
Aicher, S. A. (2003). The gigantocellular depressor area revisited. Cellular and molecular neurobiology, 23(4), 479-490.
Barman, S. M., & Gebber, G. L. (1985). Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. Journal of Neurophysiology, 53(6), 1551-1566.
Yang, Z., & Coote, J. H. (1998). Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. The Journal of Physiology, 513(2), 521-530.
Ghali, M. G. Z. (2017). The brainstem network controlling blood pressure: an important role for pressor sites in the caudal medulla and cervical spinal cord. Journal of hypertension, 35(10), 1938-1947.
Griffiths, P. R., Lolait, S. J., Pearce, L. E., McBryde, F. D., Paton, J. F., & O’Carroll, A. M. (2018). Blockade of rostral ventrolateral medulla apelin receptors does not attenuate arterial pressure in SHR and L-NAME-induced hypertensive rats. Frontiers in physiology, 9, 1488.
Gao, L., Zimmerman, M. C., Biswal, S., & Zucker, I. H. (2017). Selective Nrf2 gene deletion in the rostral ventrolateral medulla evokes hypertension and sympathoexcitation in mice. Hypertension, 69(6), 1198-1206.
Mowry, F. E., Peaden, S. C., & Biancardi, V. C. (2020). Cell‐Type Specific Angiotensin II‐Driven Nrf2 Impairment within Central Cardioregulatory Nuclei of Spontaneously Hypertensive Rats. The FASEB Journal, 34(S1), 1-1.
Tan, X., Jiao, P. L., Sun, J. C., Wang, W., Ye, P., Wang, Y. K., ... & Wang, W. Z. (2021). β-arrestin1 reduces oxidative stress via Nrf2 activation in the rostral ventrolateral medulla in hypertension. Frontiers in neuroscience, 15, 317.
Balasubramanian, P., Asirvatham-Jeyaraj, N., Monteiro, R., Sivasubramanian, M. K., Hall, D., & Subramanian, M. (2020). Obesity-induced sympathoexcitation is associated with Nrf2 dysfunction in the rostral ventrolateral medulla. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 318(2), R435-R444.
Chan, J. Y., & Chan, S. H. (2019). Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacology & therapeutics, 201, 120-136.
de Ataides Raquel, H., Guazelli, C. F. S., Verri Jr, W. A., Michelini, L. C., & Martins-Pinge, M. C. (2021). Swimming training reduces iNOS expression, augments the antioxidant defense and reduces sympathetic responsiveness in the rostral ventrolateral medulla of normotensive male rats. Brain Research Bulletin, 170, 225-233.
Li, H. B., Huo, C. J., Su, Q., Li, X., Bai, J., Zhu, G. Q., & Kang, Y. M. (2018). Exercise training attenuates proinflammatory cytokines, oxidative stress and modulates neurotransmitters in the rostral ventrolateral medulla of salt-induced hypertensive rats. Cellular Physiology and Biochemistry, 48(3), 1369-1381.
Wu, J. X., Tong, L., Hu, L., Xia, C. M., Li, M., Chen, Q. H., ... & Du, D. S. (2018). Upregulation of Nav1. 6 expression in the rostral ventrolateral medulla of stress-induced hypertensive rats. Hypertension Research, 41(12), 1013-1022.
de Castro, U. G. M., de Sousa, G. G., do Pilar Machado, R., Isoldi, M. C., Silva, M. E., Nadu, A. P., ... & Alzamora, A. C. (2012). Nitric oxide at the CVLM is involved in the attenuation of the reflex bradycardia in renovascular hypertensive rats. Nitric Oxide, 26(2), 118-125.
Muratani, H. I. R. O. M. I., Ferrario, C. M., & Averill, D. B. (1993). Ventrolateral medulla in spontaneously hypertensive rats: role of angiotensin II. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 264(2), R388-R395.
Takakura, A. C., Moreira, T. S., Menani, J. V., Campos, R. R., & Colombari, E. (2007). Commissural nucleus of the solitary tract is important for cardiovascular responses to caudal pressor area activation. Brain research, 1161, 32-37.
Yajima, Y., Ito, S., Komatsu, K., Tsukamoto, K., Matsumoto, K., & Hirayama, A. (2008). Enhanced response from the caudal pressor area in spontaneously hypertensive rats. Brain research, 1227, 89-95.
Samuels, E. R., & Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Current neuropharmacology, 6(3), 235-253.
Kostijuk, P. (1983). Chastnaya fiziologija nervnoi sistemi (p. 733p.). Leningrad: Nauka.
Grindstaff, R. J., Grindstaff, R. R., Sullivan, M. J., & Cunningham, J. T. (2000). Role of the locus ceruleus in baroreceptor regulation of supraoptic vasopressin neurons in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 279(1), R306-R319.
Olpe, H. R., Berecek, K., Jones, R. S. G., Steinmann, M. W., Sonnenburg, C., & Hofbauer, K. G. (1985). Reduced activity of locus coeruleus neurons in hypertensive rats. Neuroscience letters, 61(1-2), 25-29. DOI: 10.1016/0304-3940(85)90395-7
Koulu, M., Saavedra, J. M., Niwa, M., & Linnoila, M. (1986). Increased catecholamine metabolism in the locus coeruleus of young spontaneously hypertensive rats. Brain research, 369(1-2), 361-364.
Kunkler, P. E., Wang, G. M., & Hwang, B. H. (1994). Galanin-containing neurons in the solitary nucleus and locus coeruleus of spontaneously hypertensive rats are associated with genetic hypertension. Brain research, 651(1-2), 349-352. DOI: 10.1016/0006-8993(94)90718-8.
Kaehler, S. T., Singewald, N., & Philippu, A. (1999). Release of serotonin in the locus coeruleus of normotensive and spontaneously hypertensive rats (SHR). Naunyn-Schmiedeberg's archives of pharmacology, 359(6), 460-465.
Ogier, M., Bricca, G., Bader, M., & Bezin, L. (2016). Locus coeruleus dysfunction in transgenic rats with low brain angiotensinogen. CNS neuroscience & therapeutics, 22(3), 230-237.
Agarwal, D., Dange, R. B., Raizada, M. K., & Francis, J. (2013). Angiotensin II causes imbalance between pro‐and anti‐inflammatory cytokines by modulating GSK‐3β in neuronal culture. British journal of pharmacology, 169(4), 860-874. DOI: 10.1111/bph.12177
Lerner, S., Anderzhanova, E., Verbitsky, S., Eilam, R., Kuperman, Y., Tsoory, M., ... & Erez, A. (2019). ASL metabolically regulates tyrosine hydroxylase in the nucleus locus coeruleus. Cell reports, 29(8), 2144-2153. DOI: 10.1016/j.celrep.2019.10.043
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 M. Danukalo, O. Hancheva, O. Melnikova, M. Isachenko
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 444
Number of citations: 0