Single nucleotide polymorphisms in adiponectin and its receptors’ genes as potential risk factors for coronary artery disease in type 2 diabetes mellitus – an up-to-date overview
DOI:
https://doi.org/10.12775/JEHS.2021.11.09.087Keywords
adiponectin, AdipoR1, AdipoR2, type 2 diabetes mellitus, coronary artery disease, single nucleotide polymorphismsAbstract
Introduction: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to develop coronary artery disease (CAD) than non-diabetic individuals. Several pre-clinical and clinical studies suggested that adiponectin, a pleiotropic hormone with anti-atherogenic, anti-inflammatory, and insulin-sensitizing properties, may be a molecular link between metabolic and cardiovascular diseases.
Aim of the study: This article summarizes the current knowledge on single nucleotide polymorphisms (SNPs) within the adiponectin and its receptors’ genes on the risk of CAD in patients with T2DM.
Description of knowledge: Adiponectin, the most abundant circulating adipocytokine, is encoded by the Acrp30/adiponectin gene on chromosome 3q27, which constitutes a region specific for obesity-related metabolic syndrome. A genetic deficit of this adipokine may be responsible for the increased risk of CAD both in the general population and T2DM subjects. The results of recent years’ studies highlight that SNPs at the adiponectin locus, +45 T>G and +276 G>T as well within its two receptors, are determinants of early onset atherosclerosis in individuals with T2DM.
Conclusions: SNPs in ADIPOQ, ADIPOR1 and ADIPOR2 may modify the risk of CAD in the group of patients with T2DM. SNP +45 and SNP +276 seem to be attractive, molecular markers for identification of diabetic individuals at especially high risk of CAD. The discovering of their exact mechanisms may result in novel screening options as well as diagnostic process and treatment scheme. Therefore, further research is required to determine the effects of adiponectin and its receptors’ polymorphisms and their roles in the pathogenesis of obesity-related metabolic diseases.
References
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333-1346. doi: 10.1016/S0140-6736(05)61032-X.
Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69-80. doi: 10.1016/S2213-8587(17)30186-9.
Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169-181. doi: 10.1016/S0140-6736(11)60614-4.
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi: 10.1038/nrendo.2017.151.
Vaidya V, Gangan N, Sheehan J. Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review. Expert Rev Pharmacoecon Outcomes Res. 2015;15(3):487-497. doi: 10.1586/14737167.2015.1024661.
van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17 Suppl 1:S3-8. doi: 10.1097/01.hjr.0000368191.86614.5a.
Norhammar A, Schenck-Gustafsson K. Type 2 diabetes and cardiovascular disease in women. Diabetologia. 2013;56(1):1-9. doi: 10.1007/s00125-012-2694-y.
Lam T, Burns K, Dennis M, Cheung NW, Gunton JE. Assessment of cardiovascular risk in diabetes: Risk scores and provocative testing. World J Diabetes. 2015;6(4):634-641. doi: 10.4239/wjd.v6.i4.634.
Glovaci D, Fan W, Wong ND. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr Cardiol Rep. 2019;21(4):21. doi: 10.1007/s11886-019-1107-y.
McGurnaghan S, Blackbourn LAK, Mocevic E, Haagen Panton U, McCrimmon RJ, Sattar N, et al. Cardiovascular disease prevalence and risk factor prevalence in Type 2 diabetes: a contemporary analysis. Diabet Med. 2019;36(6):718-725. doi: 10.1111/dme.13825.
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci. 2020;21(5):1835. doi: 10.3390/ijms21051835.
Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 2001;88(9):877-887. doi: 10.1161/hh0901.090440.
Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, et al. Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord. 2003;3(4):243-254. doi: 10.2174/1568008033340090.
Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens). 2012;11(1):8-20. doi:10.1007/BF03401534.
Szydełko J, Trojanowska P, Dąbrowska I, Szydełko-Gorzkowicz M, Litwińczuk M. Adiponectin as novel biomarker of endothelial dysfunction in insulin resistance and obesity – a narrative review. J. Educ. Health Sport. 2020;10(9):591-606. doi: 10.12775/JEHS.2020.10.09.071.
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8(2):93-100. doi: 10.1093/jmcb/mjw011.
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762-769. doi: 10.1038/nature01705.
Mohammadzadeh G, Ghaffari MA. Additional effect of diabetes mellitus type 2 on the risk of coronary artery disease: role of serum adiponectin. Iran Red Crescent Med J. 2014;16(1):e8742. doi: 10.5812/ircmj.8742.
Bacci S, Menzaghi C, Ercolino T, Ma X, Rauseo A, Salvemini L, et al. The +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with coronary artery disease in type 2 diabetic patients. Diabetes Care. 2004;27(8):2015-2020. doi: 10.2337/diacare.27.8.2015.
Wang F, Suo S, Sun L, Yang J, Yang F, Zhao C, et al. Analysis of the Relationship Between ADIPOR1 Variants and the Susceptibility of Chronic Metabolic Diseases in a Northeast Han Chinese Population. Genet Test Mol Biomarkers. 2016;20(2):81-85. doi: 10.1089/gtmb.2015.0148.
Sheikh-Ali M, Raheja P, Borja-Hart N. Medical management and strategies to prevent coronary artery disease in patients with type 2 diabetes mellitus. Postgrad Med. 2013;125(1):17-33. doi: 10.3810/pgm.2013.01.2621.
Dong C, Tang L, Liu Z, Bu S, Liu Q, Wang Q, et al. Landscape of the relationship between type 2 diabetes and coronary heart disease through an integrated gene network analysis. Gene. 2014;539(1):30-36. doi: 10.1016/j.gene.2014.02.001.
Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract Res Clin Endocrinol Metab. 2014;28(1):43-58. doi: 10.1016/j.beem.2013.11.003.
Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation. 2002;105(24):2893-2898. doi: 10.1161/01.cir.0000018622.84402.ff.
Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96(5):1723-1732.
Bermúdez VJ, Rojas E, Toledo A, Rodríguez-Molina D, Vega K, Suárez L, et al. Single-nucleotide polymorphisms in adiponectin, AdipoR1, and AdipoR2 genes: insulin resistance and type 2 diabetes mellitus candidate genes. Am J Ther. 2013;20(4):414-421. doi: 10.1097/MJT.0b013e318235f206.
Siitonen N, Pulkkinen L, Lindström J, Kolehmainen M, Schwab U, Eriksson JG, et al. Association of ADIPOR2 gene variants with cardiovascular disease and type 2 diabetes risk in individuals with impaired glucose tolerance: the Finnish Diabetes Prevention Study. Cardiovasc Diabetol. 2011;10:83. doi: 10.1186/1475-2840-10-83.
Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002;34(3):275-305. doi: 10.1186/1297-9686-34-3-275.
Lacquemant C, Froguel P, Lobbens S, Izzo P, Dina C, Ruiz J. The adiponectin gene SNP+45 is associated with coronary artery disease in Type 2 (non-insulin-dependent) diabetes mellitus. Diabet Med. 2004;21(7):776-781. doi: 10.1111/j.1464-5491.2004.01224.x.
Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Hussain T. Adiponectin gene variants and the risk of coronary artery disease in patients with type 2 diabetes. Mol Biol Rep. 2011;38(6):3703-3708. doi: 10.1007/s11033-010-0484-5.
Esteghamati A, Mansournia N, Nakhjavani M, Mansournia MA, Nikzamir A, Abbasi M. Association of +45(T/G) and +276(G/T) polymorphisms in the adiponectin gene with coronary artery disease in a population of Iranian patients with type 2 diabetes. Mol Biol Rep. 2012;39(4):3791-3797. doi: 10.1007/s11033-011-1156-9.
Oliveira CS, Saddi-Rosa P, Crispim F, Canani LH, Gerchman F, Giuffrida FM, et al. Association of ADIPOQ variants, total and high molecular weight adiponectin levels with coronary artery disease in diabetic and non-diabetic Brazilian subjects. J Diabetes Complications. 2012;26(2):94-98. doi: 10.1016/j.jdiacomp.2012.02.008.
Mofarrah M, Ziaee S, Pilehvar-Soltanahmadi Y, Zarghami F, Boroumand M, Zarghami N. Association of KALRN, ADIPOQ, and FTO gene polymorphism in type 2 diabetic patients with coronary artery disease: possible predisposing markers. Coron Artery Dis. 2016;27(6):490-496. doi: 10.1097/MCA.0000000000000386.
Mohammadzadeh G, Ghaffari MA, Heibar H, Bazyar M. Association of two Common Single Nucleotide Polymorphisms (+45T/G and +276G/T) of ADIPOQ Gene with Coronary Artery Disease in Type 2 Diabetic Patients. Iran Biomed J. 2016;20(3):152-160. doi: 10.7508/ibj.2016.03.004.
Chirumbolo S. Single Nucleotide Polymorphism (SNP) in the Adiponectin Gene and Cardiovascular Disease. Iran Biomed J. 2016;20(3):187-188. doi: 10.7508/ibj.2016.04.001.
Tong G, Wang N, Leng J, Tong X, Shen Y, Yang J, et al. Common variants in adiponectin gene are associated with coronary artery disease and angiographical severity of coronary atherosclerosis in type 2 diabetes. Cardiovasc Diabetol. 2013;12:67. doi: 10.1186/1475-2840-12-67.
Soccio T, Zhang YY, Bacci S, Mlynarski W, Placha G, Raggio G, et al. Common haplotypes at the adiponectin receptor 1 (ADIPOR1) locus are associated with increased risk of coronary artery disease in type 2 diabetes. Diabetes. 2006;55(10):2763-2770. doi: 10.2337/db06-0613.
Jin Z, Pu L, Sun L, Chen W, Nan N, Li H, et al. Identification of susceptibility variants in ADIPOR1 gene associated with type 2 diabetes, coronary artery disease and the comorbidity of type 2 diabetes and coronary artery disease. PLoS One. 2014;9(6):e100339. doi: 10.1371/journal.pone.0100339.
Halvatsiotis I, Tsiotra PC, Ikonomidis I, Kollias A, Mitrou P, Maratou E, et al. Genetic variation in the adiponectin receptor 2 (ADIPOR2) gene is associated with coronary artery disease and increased ADIPOR2 expression in peripheral monocytes. Cardiovasc Diabetol. 2010 Feb 23;9:10. doi: 10.1186/1475-2840-9-10.
Liao YF, Chen LL, Zeng TS, Zheng J, Li HQ. Association of the +33371 A/G polymorphism in adiponectin receptor 2 gene with Type 2 diabetes in the Chinese population. J Endocrinol Invest. 2007;30(10):860-864. doi: 10.1007/BF03349228.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Joanna Szydełko, Izabela Dąbrowska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 688
Number of citations: 0