Impact of physical activity on incidence of osteoporotic fractures - a review
DOI:
https://doi.org/10.12775/JEHS.2021.11.09.025Keywords
Osteoporosis, Fracture, physical activity, osteoporotic fractureAbstract
Introduction and purpose: The purpose od this study is to describe influence of participating in sporting activities on health of the bones. Osteoporosis is a disease of elderly people in which bone mineral density lowers. Physical activity was reported to increase bone mineral density.
A brief description of the state of knowledge: Better physical performance is a positive factor that lowers the possibility of fracturing the bones of the elderly. Another factor that plays protective role is lean body mass and development of muscles. Training in young age can help to increase the bone mineral density, but the effect ceases with the passing of time, being much lower after decades. Multiple genes have impact on bone mineral density of the individual. Professional athletes have usually higher bone mineral density, but accumulation of microdamage in their bones can result in stress fractures. Training in elderly age is proven to increase bone mineral density of an individual, especially performing weight-bearing sports.
Conclusions: Physical activity has been proven to positively affect health in many ways. One of them is strengthening the bones by increasing bone mineral density. As it increases, the possibility to break the bone lowers, which makes it an effective way to support the fight against the osteoporosis. It is especially important for women, who are more susceptible to osteoporotic fractures in post-menopausal age.
References
Armas LA, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012 Sep;41(3):475-86. doi: 10.1016/j.ecl.2012.04.006. Epub 2012 Jun 9. PMID: 22877425.
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001 Feb 14;285(6):785-95. doi: 10.1001/jama.285.6.785. PMID: 11176917.
Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005 Mar;16 Suppl 2: S3-7. doi: 10.1007/s00198-004-1702-6. Epub 2004 Sep 8. PMID: 15365697.
Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12(5):417-27. doi: 10.1007/s001980170112. PMID: 11444092.
Del Corso L, Giuliano G, Romanelli AM, Protti MA, Moruzzo D, Amato V, Agelli M, Pentimone F. Cadute e fratture nell'anziano. Cause e consequenze [Falls and fractures in the elderly. Causes and consequences]. Minerva Med. 1994 May;85(5):245-51. Italian. PMID: 8028754.
Oja P, Titze S, Kokko S, Kujala UM, Heinonen A, Kelly P, Koski P, Foster C. Health benefits of different sport disciplines for adults: systematic review of observational and intervention studies with meta-analysis. Br J Sports Med. 2015 Apr;49(7):434-40. doi: 10.1136/bjsports-2014-093885. Epub 2015 Jan 7. PMID: 25568330.
Rosengren BE, Ribom EL, Nilsson JÅ, Mallmin H, Ljunggren O, Ohlsson C, Mellström D, Lorentzon M, Stefanick M, Lapidus J, Leung PC, Kwok A, Barrett-Connor E, Orwoll E, Karlsson MK. Inferior physical performance test results of 10,998 men in the MrOS Study is associated with high fracture risk. Age Ageing. 2012 May;41(3):339-44. doi: 10.1093/ageing/afs010. Epub 2012 Feb 6. PMID: 22314696; PMCID: PMC3335372.
Tinetti ME. Clinical practice. Preventing falls in elderly persons. N Engl J Med. 2003 Jan 2;348(1):42-9. doi: 10.1056/NEJMcp020719. PMID: 12510042.
Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK, Rosengren BE, Ribom E, Cooper C, Cawthon PM, Kanis JA, Ohlsson C, Mellström D, Johansson H, McCloskey E. Measures of Physical Performance and Muscle Strength as Predictors of Fracture Risk Independent of FRAX, Falls, and aBMD: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. 2018 Dec;33(12):2150-2157. doi: 10.1002/jbmr.3556. Epub 2018 Aug 29. PMID: 30011086; PMCID: PMC6272117.
Cöster ME, Karlsson M, Ohlsson C, Mellström D, Lorentzon M, Ribom E, Rosengren B. Physical function tests predict incident falls: A prospective study of 2969 men in the Swedish Osteoporotic Fractures in Men study. Scand J Public Health. 2020 Jun;48(4):436-441. doi: 10.1177/1403494818801628. Epub 2018 Sep 29. PMID: 30269679.
Weycker D, Edelsberg J, Barron R, Atwood M, Oster G, Crittenden DB, Grauer A. Predictors of near-term fracture in osteoporotic women aged ≥65 years, based on data from the study of osteoporotic fractures. Osteoporos Int. 2017 Sep;28(9):2565-2571. doi: 10.1007/s00198-017-4103-3. Epub 2017 Jun 7. PMID: 28593447; PMCID: PMC5550536.
Muraki S, Akune T, Oka H, Ishimoto Y, Nagata K, Yoshida M, Tokimura F, Nakamura K, Kawaguchi H, Yoshimura N. Physical performance, bone and joint diseases, and incidence of falls in Japanese men and women: a longitudinal cohort study. Osteoporos Int. 2013 Feb;24(2):459-66. doi: 10.1007/s00198-012-1967-0. Epub 2012 Mar 21. PMID: 22434204.
Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci. 2009 Aug;64(8):896-901. doi: 10.1093/gerona/glp033. Epub 2009 Apr 6. PMID: 19349593; PMCID: PMC2709543.
Cawthon PM, Orwoll ES, Peters KE, Ensrud KE, Cauley JA, Kado DM, Stefanick ML, Shikany JM, Strotmeyer ES, Glynn NW, Caserotti P, Shankaran M, Hellerstein M, Cummings SR, Evans WJ; Osteoporotic Fractures in Men (MrOS) Study Research Group. Strong Relation Between Muscle Mass Determined by D3-creatine Dilution, Physical Performance, and Incidence of Falls and Mobility Limitations in a Prospective Cohort of Older Men. J Gerontol A Biol Sci Med Sci. 2019 May 16;74(6):844-852. doi: 10.1093/gerona/gly129. PMID: 29897420; PMCID: PMC6521914.
Yin L, Xu Z, Wang L, Li W, Zhao Y, Su Y, Sun W, Liu Y, Yang M, Yu A, Blake GM, Wu X, Veldhuis-Vlug AG, Cheng X, Hind K, Engelke K. Associations of Muscle Size and Density With Proximal Femur Bone in a Community Dwelling Older Population. Front Endocrinol (Lausanne). 2020 Jul 28;11:503. doi: 10.3389/fendo.2020.00503. PMID: 32849289; PMCID: PMC7399084.
Oura P, Nurkkala M, Auvinen J, Niinimäki J, Karppinen J, Junno JA. The Association of Body Size, Shape and Composition with Vertebral Size in Midlife - The Northern Finland Birth Cohort 1966 Study. Sci Rep. 2019 Mar 8;9(1):3944. doi: 10.1038/s41598-019-40880-4. PMID: 30850701; PMCID: PMC6408584.
Mikkilä S, Calogiuri G, Emaus N, Morseth B. A cross-sectional and 6-year follow-up study of associations between leisure time physical activity and vertebral fracture in adults. BMC Musculoskelet Disord. 2019 Sep 17;20(1):435. doi: 10.1186/s12891-019-2821-8. PMID: 31526375; PMCID: PMC6747745.
Patel H, Sammut L, Denison H, Teesdale-Spittle P, Dennison E. The Relationship Between Non-elite Sporting Activity and Calcaneal Bone Density in Adolescents and Young Adults: A Narrative Systematic Review. Front Physiol. 2020 Mar 6;11:167. doi: 10.3389/fphys.2020.00167. PMID: 32210834; PMCID: PMC7069218.
Minett MM, Weidauer L, Wey HE, Binkley TL, Beare TM, Specker BL. Sports Participation in High School and College Leads to High Bone Density and Greater Rates of Bone Loss in Young Men: Results from a Population-Based Study. Calcif Tissue Int. 2018 Jul;103(1):5-15. doi: 10.1007/s00223-017-0383-z. Epub 2018 Jan 4. PMID: 29302709.
Modarress-Sadeghi M, Oura P, Junno JA, Niemelä M, Niinimäki J, Jämsä T, Korpelainen R, Karppinen J. Objectively Measured Physical Activity Is Associated with Vertebral Size in Midlife. Med Sci Sports Exerc. 2019 Aug;51(8):1606-1612. doi: 10.1249/MSS.0000000000001962. PMID: 30817715.
Tabor E, Zagórski P, Martela K, Glinkowski W, Kuźniewicz R, Pluskiewicz W. The role of physical activity in early adulthood and middle-age on bone health after menopause in epidemiological population from Silesia Osteo Active Study. Int J Clin Pract. 2016 Oct;70(10):835-842. doi: 10.1111/ijcp.12874. Epub 2016 Sep 22. PMID: 27655014.
Edward Ryan-Moore, Yiannis Mavrommatis, Mark Waldron, Systematic Review and Meta-Analysis of Candidate Gene Association Studies With Fracture Risk in Physically Active Participants, Front. Genet., 16 June 2020 | https://doi.org/10.3389/fgene.2020.00551
Kohrt, W. M., Bloomfield, S. A., Little, K. D., Nelson, M. E., and Yingling, V. R. (2004). Physical activity and bone health. Med. Sci. Sports Exercise 36, 1985–1996. doi: 10.1249/01.MSS.0000142662.21767.58
Santos, L., Elliott-Sale, K.J. & Sale, C. Exercise and bone health across the lifespan. Biogerontology 18, 931–946 (2017). https://doi.org/10.1007/s10522-017-9732-6
Trajanoska, K., Morris, J. A., Oei, L., Zheng, H.-F., Evans, D., Kiel, M., et al. (2018). Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ 362:k3225. doi: 10.1136/bmj.k3225
Andrew, T., Leto, A., Scurrah, K. J., MacGregor, A. J., and Spector, T. D. (2004). Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. J. Bone Mineral Res. 20, 67–74. doi: 10.1359/JBMR.041015
Michaëlsson, K., Melhus, H., Ferm, H., Ahlbom, A., and Pedersen, N. L. (2005). Genetic liability to fractures in the elderly. Arch. Inter. Med. 165:1825. doi: 10.1001/archinte.165.16.1825
Chatzipapas, C., Boikos, S., Drosos, G. I., Kazakos, K., Tripsianis, G., Serbis, A., et al. (2009). Polymorphisms of the vitamin D receptor gene and stress fractures. Hormone Metabol. Res. 41, 635–640. doi: 10.1055/s-0029-1216375
Blades, H. Z., Arundel, P., Carlino, W. A., Dalton, A., Crook, J. S., Freeman, J. V., et al. (2010). Collagen gene polymorphisms influence fracture risk and bone mass acquisition during childhood and adolescent growth. Bone 47, 989–994. doi: 10.1016/j.bone.2010.08.014
Korvala, J., Hartikka, H., Pihlajamäki, H., Solovieva, S., Ruohola, J.-P., Sahi, T., et al. (2010). Genetic predisposition for femoral neck stress fractures in military conscripts. BMC Gene. 11:95. doi: 10.1186/1471-2156-11-95
Varley, I., Hughes, D., Greeves, C., Stellingwerff, J. P. T., Ranson, C., Fraser, W., et al. (2018). The association of novel polymorphisms with stress fracture injury in elite athletes: further insights from the SFEA cohort. J. Sci. Sport 21, 564–568. doi: 10.1016/j.jsams.2017.10.038
Posthumus, M., September, A. V., Keegan, M., O'Cuinneagain, D., Van der Merwe, W., Schwellnus, M., et al. (2009). Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br. J. Sports Med. 43, 352–356. doi: 10.1136/bjsm.2008.056150
Stepien-Słodkowska, M., Ficek, K., Eider, J., Leonska-Duniec, A., Maciejewska-Karłowska, A., Sawczuk, M., et al. (2013). The +1245g/t polymorphisms in the collagen type i alpha 1 (col1a1) gene in polish skiers with anterior cruciate ligament injury. Biol. Sport 30, 57–60. doi: 10.5604/20831862.1029823
Ficek, K., Cieszczyk, P., Kaczmarczyk, M., Maciejewska-Karłowska, A., Sawczuk, M., Cholewinski, J., et al. (2013). Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J. Sci. Med. Sport 16, 396–400. doi: 10.1016/j.jsams.2012.10.004
Suuriniemi, M., Kovanen, V., Mahonen, A., Alén, M., Wang, Q., Lyytikäinen, A., et al. (2006). COL1A1 Sp1 polymorphism associates with bone density in early puberty. Bone 39, 591–597. doi: 10.1016/j.bone.2006.02.053
Herbert AJ, Williams AG, Hennis PJ, et al. The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes. Eur J Appl Physiol. 2019;119(1):29-47. doi:10.1007/s00421-018-4007-8
Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90(6):1674–1692.
Pluijm SMF, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P. Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res. 2001;16(11):2142–2151.
Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31(5):629–662.
Hsu Y-H, Kiel DP. Genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab. 2012;97(10):E1958–E1977
Estrada K, Styrkarsdottir U, Evangelou E, Hsu Y-H, Duncan EL, Ntzani EE, Oei L, Albagha OME, Amin N, Kemp JP. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491.
Mantila Roosa SM, Liu Y, Turner CH. Gene expression patterns in bone following mechanical loading. J Bone Miner Res. 2011;26(1):100–112.
Mitchell JA, Chesi A, Elci O, McCormack SE, Roy SM, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA. Physical activity benefits the skeleton of children genetically predisposed to lower bone density in adulthood. J Bone Miner Res. 2016;31(8):1504–1512.
Nakamura O, Ishii T, Mankyu H, Tsubakimoto S, Nomura T, Tokuyama K. Contribution of vitamin D receptor genotypes to bone mineral density in young male athletes with different impact loading. Eur J Sport Sci. 2002;2(2):1–8.
Varley I, Greeves JP, Sale C, Friedman E, Moran DS, Yanovich R, Wilson PJ, Gartland A, Hughes DC, Stellingwerff T. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury. Purinergic Signal. 2016;12(1):103–113.
Hind K, Gannon L, Whatley E, et al. Bone cross-sectional geometry in male runners, gymnasts, swimmers and non-athletic controls: a hipstructural analysis study. Eur J Appl Physiol. 2012;112:535–541.
Wilks DC, Winwood K, Gilliver SF, et al. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT study. Bone. 2009;45:91–97.
Barry DW, Kohrt WM. Exercise and the preservation of bone health. J Cardiopulm Rehabil Prev. 2008;28:153–162.
Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–786.
Fonseca H, Moreira-Gonçalves D, Coriolano H-JA, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44(1):37–53
Cheung AM, Frame H, Ho M, Mackinnon ES, Brown JP. Bone strength and management of postmenopausal fracture risk with antiresorptive therapies: considerations for women’s health practice. Int J Women’s Health. 2016;8:537.
Valdimarsson Ö, Kristinsson J, Stefansson S, Valdimarsson S, Sigurdsson G. Lean mass and physical activity as predictors of bone mineral density in 16–20-year old women. J Intern Med. 1999;245(5):489–496.
Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231
Torstveit MK, Sundgot-Borgen J. Low bone mineral density is two to three times more prevalent in non-athletic premenopausal women than in elite athletes: a comprehensive controlled study. Br J Sports Med. 2005;39(5):282–287.
Chang RPY, Briffa KN, Edmondston SJ. Bone mineral density and body composition in elite female golf and netball players. Eur J Sport Sci. 2013;13(2):183–190.
Calbet JAL, Herrera PD, Rodriguez LP. High bone mineral density in male elite professional volleyball players. Osteoporos Int. 1999;10(6):468–474.
Jones BH, Thacker SB, Gilchrist J, Kimsey CD, Jr, Sosin DM. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol Rev. 2002;24(2):228–247.
Loucks AB. Low energy availability in the marathon and other endurance sports. Sports Med. 2007;37(4–5):348–352.
Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323–328.
Mojock, Christopher D. PhD; Ormsbee, Michael J. PhD; Kim, Jeong-Su PhD; Arjmandi, Bahram H. PhD, RD; Louw, Gideon A. MS; Contreras, Robert J. PhD; Panton, Lynn B. PhD Comparisons of Bone Mineral Density Between Recreational and Trained Male Road Cyclists, Clinical Journal of Sport Medicine: March 2016 - Volume 26 - Issue 2 - p 152-156 doi: 10.1097/JSM.0000000000000186
Yu PA, Hsu WH, Hsu WB, et al. The effects of high impact exercise intervention on bone mineral density, physical fitness, and quality of life in postmenopausal women with osteopenia: A retrospective cohort study. Medicine (Baltimore). 2019; 98(11): e14898. doi:10.1097/MD.0000000000014898
Khan AA, Farhad A, Siddiqui PQR, Ansari B. Effects of osteoanabolic exercises on bone mineral density of osteoporotic females: A randomized controlled trial. Int J Health Sci (Qassim). 2019; 13(1): 9-13.
Zhang Y, Chai Y, Pan X, et al. Tai chi for treating osteopenia and primary osteoporosis: a meta-analysis and trial sequential analysis. Clin Interv Aging. 2019;14:91-104. doi:10.2147/CIA.S187588
Holloway-Kew KL, Moloney DJ, Bucki-Smith G, et al. Sports participation and fracture in older Australian men. Arch Osteoporos. 2018;13(1):43. doi:10.1007/s11657-018-0459-z
Langsetmo L, Kats AM, Cawthon PM, et al. The Association Between Objectively Measured Physical Activity and Subsequent Health Care Utilization in Older Men. J Gerontol A Biol Sci Med Sci. 2019; 74(6): 820-826. doi:10.1093/gerona/glx191
Stanghelle B, Bentzen H, Giangregorio L, et al. Effects of a resistance and balance exercise programme on physical fitness, health-related quality of life and fear of falling in older women with osteoporosis and vertebral fracture: a randomized controlled trial. Osteoporos Int. 2020; 31(6): 1069-1078. doi:10.1007/s00198-019-05256-4
Stanghelle B, Bentzen H, Giangregorio L, et al. Physical fitness in older women with osteoporosis and vertebral fracture after a resistance and balance exercise programme: 3-month post-intervention follow-up of a randomised controlled trial. BMC Musculoskelet Disord. 2020; 21(1): 471. doi:10.1186/s12891-020-03495-9
Diem SJ, Lui LY, Langsetmo L, et al. Effects of Mobility and Cognition on Maintenance of Independence and Survival Among Women in Late Life. J Gerontol A Biol Sci Med Sci. 2018; 73(9): 1251-1257. doi:10.1093/gerona/glx209
Otero M, Esain I, González-Suarez ÁM, Gil SM. The effectiveness of a basic exercise intervention to improve strength and balance in women with osteoporosis. Clin Interv Aging. 2017;12:505-513. doi:10.2147/CIA.S127233
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 © The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 437
Number of citations: 0