,,Pszeniczna rewolucja” a zdrowotne aspekty konsumpcji
DOI:
https://doi.org/10.12775/HERB.2025.006Schlagworte
pszenica, gluten, celiakiaAbstract
Pszenica jest jedną z najczęściej uprawianych roślin na świecie i stanowi główne i odnawialne źródło żywności, paszy i surowców przemysłowych. Na przestrzeni wieków na skutek udomowienia prastarych zbóż oraz stosowanych zabiegów inżynierii genetycznej, mających ma celu podniesienie plenności i odporności roślin na niesprzyjające warunki uprawy, został zmieniony zarówno fenotyp, jak i genotyp większości roślin uprawnych. Obecnie uprawa pszenicy prowadzona jest na dużą skalę, bo wielkość uprawy w latach 2022/2023 wyniosła około 800 mln ton, z czego około 95% produkowanej pszenicy to Triticum aestivum – gatunek zwykle nazywany zwyczajną „chlebową” lub „miękką” pszenicą. Mimo że współcześnie na polach dominuje około 25 tys. odmian pszenicy, obserwuje się powrót do rolnictwa ekologicznego opartego na prastarych gatunkach, takich jak: płaskurka, samopsza czy orkisz. Wydają się one korzystnie wpływać na poprawę składu odżywczego i jakość spożywanych przez konsumentów produktów z pszenicy. Pszenica zawiera, obok białka, tłuszcz, węglowodany i błonnik pokarmowy w postaci skrobi opornej oraz witaminy, związki mineralne i tochemikalia, takie jak polifenole. Sama skrobia pszenna jest uważana za składnik ważny w komercyjnej w uprawie tego zboża, zaś podstawowy pod względem wartości i przydatności w produkcji spożywczej jest gluten pszenny. Celem pracy jest zebranie literatury naukowej odpowiadającej na często zadawane pytanie: czy musimy ze względów zdrowotnych ograniczyć lub całkowicie wyeliminować pro-
dukty zbożowe, czy też wystarczy powrócić do starych zbóż, znanych od kilku tysięcy lat, i rolnictwa ekologicznego?
Literaturhinweise
[1] Hensel W., Tabaczyński S., Rewolucja neolityczna i jej znaczenie dla rozwoju kultury europejskiej, Zakład Narodowy im. Ossolińskich, Wrocław 1978.
[2] Salamini F., Özkan H., Brandolini A., Genetics and geography of wild cereal domestication in the near east, Nature Reviews Genetetics, 2002, 3, s. 429–41.
[3] Venske E., Dos Santos R.S., Busanello C., Gustafson P., Costa de Oliveira A., Bread wheat: A role model for plant domestication and breeding, Hereditas, 2019, 16, s. 156.
[4] Nesbitt M., Where was einkorn wheat domesticated?, Trends in Plant Science, 1998, 3, s. 1360–1385.
[5] Dubcovsky J., Dvorak J., Genome plasticity a key factor in the success of polyploidy wheat under domestication, Science, 2007, 316, s. 1862–1866.
[6] Shewry P.R., Wheat, Journal of Experimental Botany, 2009, 60, s. 1537–1553.
[7] Brouns F., Geisslitz S., Guzman C., Ikeda T.M., Arzani A., Latella G., Simsek S., Colomba M., Gregorini A., Zevallos V., Lullien-Pellerin V., Jonkers D., Shewry P.R., Do ancient wheats contain less gluten than modern bread wheat, in favour of better health?, Nutrition Bulletin, 2022, 47(2), s. 157–167.
[8] Nesbitt M., Wheat evolution: integrating archaeological and biological evidence, [w:] P.D.S. Caligari, P.E. Brandham, Wheat taxonomy: the legacy of John Percival, Linnean Society, London, 2001, s. 37–59 (Linnean Special Issue 3).
[9] Harlan J.R., Wet M.J., Price E.G., Comparative evolution of cereals, Evolution, 1973, 27, s. 3110–325.
[10] Simons K.J., Fellers J.P., Trick H.N., Zhang Z., Tai Y.S., Gill B.S., Faris J.D., Molecular characterization of the major wheat domestication gene Q, Genetics, 2006, 172(1), s. 547–55.
[11] Arzani A., Ashraf M., Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products, Comprehensive Reviews in Food Science and Food Safety, 2017, 16, s. 477–488.
[12] Shewry P.R., Do ancient types of wheat have health benefits compared with modern bread wheat?, Journal of Cereal Science, 2018, 79, s. 469–476.
[13] Dixon J., Braun H.J., Kosina P.P., Crouch J., Wheat facts and futures, CIMMMYT, Mexico 2009.
[14] Vergauwen D., De Smet I., From early farmers to Norman Borlaug – the making of modern wheat, Current Biology, 2017, 27(17), s. 858–862.
[15] Sands D.C., Morris C.E., Dratz E.A., Pilgeram A.L., Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods, Plant Science, 2009, 177, s. 377–389.
[16] Peng Sun D., Nevo E., Domestication evolution, genetics and genomics in wheat, Molecular Breeding, 2011, 28, s. 281.
[17] Siddique K., Belford R., Perry M., Tennant D., Growth, development and light interception of old and modern wheat cultivars in a Mediterranean-type environment, Australian Journal of Agricultural Research, 1989, 40, s. 473–487.
[18] Poland J., Endelman J., Dawson J., Rutkoski J., Wu S., Manes Y., Dreisigacker S., Crossa J., Sánchez-Villeda H., Sorrells M., Genomic selection in wheat breeding using genotyping-by-sequencing, Plant Genome, 2012, 5, s. 103–113.
[19] Shewry P.R., Hey S., Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components?, Journal of Cereal Science, 2015, 65, 236–243.
[20] Mackay I., Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time, Theoretical and Applied Genetetics, 2011, 122, s. 225–238.
[21] Feldman M., Wheats, [w:] (red.) J. Smartt, N.W. Simmonds, Evolution of crop plants, Longman Scientific and Technical, Harlow 1995, s. 185–192.
[22] Dyke G.V., John Lawes of Rothamsted. Pioneer of science farming and industry, Hoos Press, Harpenden 1993.
[23] Hedden P., The genes of the Green Revolution, Trends in Genetics, 2003, 19, s. 5–9.
[24] Borlaug N., Feeding a hungry world, Science, 2007, 19, 318(5849), s. 359.
[25] Wharton C.R. Jr., The Green Revolution: Cornucopia or Pandora’s Box, Foreign Affairs, 1969, 47, s. 464–476.
[26] Ali C.H., Khan D.A., Choudhari Income Impact of the Green Revolution, Pakistan Economic and Social Review, 1973, 11, s. 67–82.
[27] Dill G.M., CaJacob C.A., Padgette S.R., Glyphosate-resistant crops: Adoption, use and future considerations, Pest Management Science, 2008, 64, s. 326–331.
[28] Barfoot P., Brookes G., Key global environmental impacts of genetically modified (GM) crop use 1996–2012, GM Crops & Food, 2014, 5, 2, s. 149–160.
[29] Karami F., Shotorbani P.M., Genetically modified foods: Pros and cons for human health, Food & Health, 2018, 1, s. 18–23.
[30] Adamczyk A., Banaszak E., Rozynek M., Rybacka K., Rośliny modyfikowane genetycznie – zmierzch cywilizacji czy zbawienie ludzkości?, Tutoring Gedanensis, 2018, 3, s. 24–28.
[31] Shewry P., What Is Gluten – Why Is It Special?, Frontiers in Nutrition, 2019, 5(6), s. 101.
[32] Biel W., Maciorowski R., Ocena wartości odżywczej ziarna wybranych odmian pszenicy, Żywność – Nauka – Technologia – Jakość, 2012, 2(81), s. 45–55.
[33] Wrigley C., Békés F., Bushuk W., Gluten, A balance of gliadin and glutenin, [w:] Gliadin and Glutenin: the Unique Balance of Wheat Quality, American Association of Cereal Chemists, St. Paul 2006, s. 3–32.
[34] Godfrey D., Hawkesford M.J., Powers S.J., Millar S., Shewry, P.R., Effects of crop nutrition on wheat grain composition and end use quality, Journal of Agricultural and Food Chemistry, 2010, 58, s. 3012–3021.
[35] Kasarda D.D., Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding?, Journal of Agricultural and Food Chemistry, 2013, 61, s. 1155–1159.
[36] Shewry P.R., Hassall K.L., Grausgruber H., Andersson A.A.M., Lampi A.M., Piironen V., Do modern types of wheat have lower quality for human health?, Nutrition Bulletin, 2020.
[37] Frakolaki G., Giannou V., Topakas E., Tzia C., Chemical characterization and breadmaking potential of spelt versus wheat our, Journal of Cereal Science, 2018, 79, s. 50–56.
[38] Van Boxstael F., Aerts H., Linssen S., Latré, J., Christiaens A., Haesaert G., Dierickx I., Brusselle J., De Keyzer W., A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: Whole grains, processed in bread, and population-level intake implications, Journal of Science Food and Agriculture, 2020, 100, s. 4108–4118.
[39] Podolska G., Aleksandrowicz E, Szafrańska A., Bread making potential of Triticum aestivum and Triticum spelta species, Open Life Sciences, 15(1), 2020, s. 30–40.
[40] Kohajdová Z., Karovicova J., Fermentation of cereals for specific purpose, Journal of Food and Nutrition Research, 2007, 46, s. 51–57.
[41] Brankovic G., Dodig D., Pajić V., Kandic R., V., Knezevic D., Djuric N., Zivanovic T., Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia, Zemdirbyste-Agriculture, 2018, 105, s. 39–48.
[42] Gawęcki J., Białka w żywności i żywieniu, Poznań, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, 2016, s. 102–103.
[43] Osborne T.B., The vegetable proteins, Journal of the Society of Chemical Industry, 1924, 43, s. 440.
[44] Belitz H.D., Grosch W., Scheberl P., Cereals and cereal products, Springer Verlag, 2009.
[45] Gąsiorowski H., Pszenica – chemia i technologia, PWRiL, Poznań, 2004.
[46] Cooper R., Re-discovering ancient wheat varieties as functional foods, Jornal of Traditional and Complementary Medicine, 2015, 29, 5(3), s. 138–143.
[47] Truswell A.S., Cereal grains and coronary heart disease, European Journal of Clinical Nutrition, 2002, 56, s. 1–14.
[48] Jones J.M., García C.G., Braun H.J., Perspective: Whole and Refined Grains and Health-Evidence Supporting Make Half Your Grains Whole, Advances in Nutrition, 2020, 1, 11(3), s. 492–506.
[49] Geisslitz S., Longin C.F.H., Scherf K.A., Koehler P., Comparative Study on Gluten Protein Composition of Ancient (Einkorn, Emmer and Spelt) and Modern Wheat Species (Durum and Common Wheat), Foods, 2019, 8, s. 409.
[50] Schalk K., Lexhaller B., Koehler P., Scherf K.A., Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials, PLoS One, 2017, 12.
[51] Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y., Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications, Foods, 2019, 8, s. 92.
[52] Wieser H., Chemistry of gluten proteins., Food Microbiology, 2007, 24, s. 115–119.
[53] Shewry P.R., Halford N.G., Cereal seed storage proteins: Structures, properties and role in grain utilization, Journal of Experimental Botany, 2002, 53, s. 947–958.
[54] Zilić S., Barać M., Pešić M., Dodig D., Ignjatović-Micić D., Characterization of proteins from grain of different bread and durum wheat genotypes, International Journal of Molecular Sciences, 2011, 12(9), s. 5878–94.
[55] Wieser H., Antes S., Seilmeier W., Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography, Cereal Chemistry, 1998, 75, s. 644–650.
[56] Thanhaeuser S.M., Wieser H., Koehler P., Spectrophotometric and fluorimetric quantitation of quality-related protein fractions of wheat flour, Journal of Cereal Science, 2015, 62, s. 58–65.
[57] Boukid F., Folloni S., Sforza S., Vittadini E., Prandi B. Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications, Comprehensive Reviews in Food Science and Food Safety, 2018, 17, s. 123–136.
[58] Zamaratskaia G., Gerhardt K., Wendin K., Biochemical characteristics and potential applications of ancient cereals – An underexploited opportunity for sustainable production and consumption, Trends in Food Science & Technology, 2021, 107, s. 14–123.
[59] Colomba M.S., Gregorini A., Are ancient durum wheats less toxic to celiac patients? A study of α-gliadin from Graziella Ra and kamut, Science World Journal, 2012, 1, s. 837416.
[60] De Santis M.A., Kosik O., Passmore D., Flagella Z., Shewry P.R., Lovegrove A., Comparison of the dietary fibre composition of old and modern durum wheat (Triticum turgidum spp. durum) genotypes, Food Chemistry, 2018, 244, s. 304–310.
[61] Day L., Augustin M.A., Batey I.L., Wrigley C.W., Wheat-gluten uses and industry needs, Trends in Food Sciences Technology, 2006, 17, s. 82–90.
[62] Hlywiak K.H., Hidden sources of gluten, Practical Gastroenterology, 2008, 32, s. 27–39.
[63] Maltin V., Charabaty A., Mangione R., Medications: a hidden source of gluten, Practical Gastroenterology, 2009, 33, s. 32–38.
[64] Gabler A.M., Scherf K.A., Comparative Characterization of Gluten and Hydrolyzed Wheat Proteins, Biomolecules, 2020, 24, 10, 9, s. 1227.
[65] Laurière M., Pecquet C., Bouchez-Mahiout I., Snégaroff J., Bayrou O., Raison-Peyron N., Vigan M., Hydrolysed wheat proteins present in cosmetics can induce immediate hypersensitivities, Contact Dermatology, 2006, 54, s. 283–289.
[66] Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J., Origins and evolution of the Western diet: Health implications for the 21st century, American Journal of Clinical Nutrition, 2005, 81, s. 341–354.
[67] Kopf J.C., Suhr M.J., Clarke J., Eyun S.I., Riethoven J.J.M., Ramer-Tait A.E., Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: a randomized controlled trial, Nutrition Journal, 2018, 17, s. 72.
[68] Seal C.J., Brownlee I.A., Whole-grain foods and chronic disease: evidence from epide- miological and intervention studies, The Proceedings of the Nutrition Society, 2015, 74, s. 313–319.
[69] Fardet A., New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?, Nutrition Research Review, 2010, 23, s. 65–134.
[70] Tullio V., Gasperi V., Catani M.V., Savini, I., The impact of whole grain intake on gastro- intestinal tumors: a focus on colorectal, gastric, and esophageal cancers, Nutrients, 2020, 13(1), s. 81.
[71] Wang W., Li J., Chen X., Yu M., Pan, Q., Guo L., Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: a systematic review and meta-analysis, BMC Cardiovascular Disorders, 2020, 20, s. 82.
[72] Davies R.W., Nutrients separating the wheat from the chaff: nutritional value of plant proteins and their potential contribution to human health, Nutrients, 2020, 12, s. 10–14.
[73] Shamir R., Advances in celiac disease, Gastroenterology Clinics of North America, 2003,
32, s. 931–947.
[74] Singh P., Arora A., Strand T.A., Leffer D.A., Catassi C., Green P.H., Global prevalence of celiac disease: systematic review and meta-analysis., Clinical Gastroenterology and Hepatology, 2018, 16, s. 823–36.
[75] Al-Toma A., Volta U., Auricchio R., Castillejo G., Sanders D.S., Cellier C., Mulder C.J., Lundin K.E.A., European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders, United European Gastroenterology Journal, 2019, 7(5), s. 583–613.
[76] Halfdanarson T.R., Litzow M.R., Murray J.A., Hematologic manifestations of celiac disease, Blood, 2007, 109, s. 412–421.
[77] Pasha I., Saeed F., Sultan M.T., Batool R., Aziz M., Ahmed W., Wheat allergy and intole- rence; recent updates and perspectives, Critical Reviews in Food Science and Nutrition, 2016, 56, s. 13–24.
[78] Biesiekierski J.R., Newnham E.D., Irving P.M., Barrett J.S., Haines M., Doecke, J.D., Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial, American Journal of Gastroenterology, 2011, 106, s. 508–514.
[79] Christensen M.J., Eller E., Mortz C.G., Brockow K., Bindslev-Jensen C., Wheat-Dependent Cofactor-Augmented Anaphylaxis: A Prospective Study of Exercise, Aspirin, and Alcohol Efficacy as Cofactors, Journal of Allergy and Clinical Immunology in Practice, 2019, 7, s. 114–121.
[80] Perlmutter D., Grain brain: the surprising truth about wheat, carbs, and sugar – your brain’s silent killers, Hachette Book Group, 2014.
[81] Tyburski J., Babalski M., Uprawa i przetwórstwo pszenicy orkisz, CDR, Radom 2006.
[82] Li L., Shewry P.R., Ward J.L., Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen, Journal of Agriculture Food Chemistry, 2008, 21, 56, s. 9732–9739.
[83] Sucheta S., Rahul G., Singh D., Variation in Selenium Tolerance, Accumulation, and Growth Parameters of Different Wheat Cultivars. Communications in Soil Science and Plant Analysis, 2016, 47, 2, s. 203–212.
[84] Stipanuk M.H., Caudill M.A., The Minerals and Water, [w:] Biochemistry, Physiology and Molecular Aspects of Human Nutrition, (red.) M.H. Stipanuk, M.A. Caudill, 3rd ed. Elsevier Saunders, St. Louis 2013, s. 719–72.
[85] Brandolini A., Hidalgo A., Gabriele S., Heun M., Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats, Journal of Cereal Science, 2015, 63, s. 122–127.
[86] Caio G., Lungaro L., Segata N., Guarino M., Zoli G., Volta U., De Giorgio R., Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity, Nutrients, 2020, 19, 126, s. 1832.
[87] Alvarez-Jubete L., Arendt E.K., Gallagher E., Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients, Trends in Food Science and Technology, 2010, 21, s. 106–113
Downloads
Veröffentlicht
Zitationsvorschlag
Ausgabe
Rubrik
Lizenz

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Keine Bearbeitungen 4.0 International.
Stats
Number of views and downloads: 3
Number of citations: 0