Specyficzna modulacja smaku i aromatu greckiego oregano (Origanum vulgare var. hirtum) i jego olejku eterycznego
DOI:
https://doi.org/10.12775/HERB.2023.003Słowa kluczowe
karwakrol, plazma jarzeniowa, tymol, woda plazmowanaAbstrakt
Plantacje greckiego oregano (Origanum vulgare var. hirtum) podlewano wodą traktowaną przez 30 min niskotemperaturową, niskociśnieniową plazmą jarzeniową o niskiej częstości pod powietrzem, azotem ditlenkiem węgla, metanem lub cząsteczkowym tlenem. Rodzaj wody miał wpływ na wydajność i jakość plonów wyrażoną liczbą roślin, ich wysokością, całkowitą biomasą oraz liczbą i masą liści. Podlewanie roślin każdym rodzajem plazmowanej wody prowadziło do istotnych różnic w składzie wydzielanego olejku eterycznego. Dzięki temu można będzie regulować jakość olejku stosownie do żądań konsumentów, co jest szczególnie istotne w przypadku ziołolecznictwa i aromatoterapii. Wybór rodzaju wody do podlewania pozwalał na pozyskiwanie olejku eterycznego o odmiennych właściwościach przyprawowych i nawaniających. Bez względu na rodzaj wody stosowanej do podlewania karwakrol był zawsze dominującym składnikiem olejku. Stosowanie poszczególnych rodzajów wody odmiennie wpływało też na wydajność poszczególnych składników olejku. Podlewanie plazmowaną wodą pozwalało eliminować niektóre składniki olejku, ale nigdy nie
prowadziło do pojawiania się nowych.
Bibliografia
Oszczeda Z., Elkin I., Strek W., Equipment for treatment of water with plasma, Polish Patent PL, 216025 B1, 28 February, 2014.
Reszke E., Yelkin L., Oszczęda Z., Plasming lamp with power supply, Polish Patent PL, 2017, 227530 B1.
Białopiotrowicz T., Ciesielski W., Domański J., Doskocz M., Fiedorowicz M., Grąż K., Kołoczek H., Kozak A., Oszczęda Z., Tomasik P., Structure and physicochemical properties of water treated with low-temperature low-frequency plasma, Current Physical Chemistry, 2016, 6, s. 312–320.
Chwastowski J., Ciesielska K., Ciesielski W., Khachatryan K., Kołoczek H., Kulawik D., Oszczęda Z., Tomasik P., Witczak M., Structure and physicochemical properties of water treated under nitrogen with low-temperature glow plasma, Water, 2020, 12, 1314.
Ciesielska A., Ciesielski W., Kołoczek H., Kulawik D., Kończyk J., Oszczęda Z. Tomasik P., Structure and some physicochemical and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low frequency, Open Chemistry, 2020, 18, s. 1–12.
Ciesielska A., Ciesielski W., Khachatryan K., Kołoczek H., Kulawik D., Oszczęda Z., Soroka J.A., Tomasik P., Structure and physicochemical properties of water treated under carbon dioxide with low-temperature glow plasma of low frequency, Water, 2020, 12, 1920.
Ciesielska A., Ciesielski W., Khachatryan K., Kołoczek H., Kulawik D., Oszczęda Z., Soroka J.A., Tomasik P., Structure and physicochemical properties of water treated under methane with low-temperature glow plasma of low frequency, Water, 2020,12, 1638.
Chwastowski J., Ciesielski W., Khachatryan K., Kołoczek H., Kulawik D., Oszczęda Z., Soroka J.A., Tomasik P., Witczak M., Water of increased content of molecular oxygen, Water, 2020, 12, 02488.
Wolski K., Talar-Krasa M., Leshschenko A., Dradrach A., Adamczewska-Sowińska K., Oszczęda Z., Application of nanowater and biopreparations in agriculture (in Polish), Studia i Monografie Politechniki Opolskiej, 2014, 404, s. 265–372.
Pisulewska E., Ciesielski W., Jackowska M., Gąstoł M., Oszczęda Z., Tomasik P., Effect of water treated with low-pressure, low-temperature glow plasma of low frequency on planted peppermint (Mentha piperita), EJPAU, Seria Biotechnologia, 2018, 21(3), #01.
Ciesielska K., Ciesielski W., Kulawik D., Oszczęda Z., Tomasik P., Cultivation of cress involving water treated under different atmospheres with low temperature, lowpressure glow plasma of low frequency, Water, 2020, 12, 2152.
Ciesielska K., Ciesielski W., Girek T., Kołoczek H., Oszczęda Z., Tomasik P., Reaction of Lavandula angustifolia Mill. to water treated with low-temperature, low- pressure glow plasma of low frequency, Water, 2020, 12, 3168.
Ciesielski W., Gąstoł M., Girek T., Kulawik D., Oszczęda Z., Pisulewska E., Tomasik P., Specific controlling essential oil composition of basil (Ocimum basilicum L.), Water, 2020, 12, 3332.
Tomasik-Krótki J., Strojny J., Scaling of sensory impressions, Journal of Sensory Studies, 2008, 23, s. 251–266.
Szott K., Krzywda M., Strojny J., Tomasik P., Sensual taste – cloro associations and their link to temperament, Study. Social Science (Canada), 2014, 5(3), s. 1–8.
Kew World Checklist of Selected Plant Families, Royal Botanic Gardens, Oregano, Origanum vulgare L. Kew, Richmond, Surrey, UK. 2017.
Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Canada . Oregano and Marjoram (17 October 2012).
Figiel A., Szumny A., Gutiérrez-Ortíz A., Carbonell-Barrachina A.A., Composition of oregano essential oil (Origanum vulgare) as affected by drying method, Journal of Food Engineering, 2010, 98, s. 240–247.
Dragland S., Senoo H., Wake K., Holte K., Blomhoff R., Several culinary and medicinal herbs are important sources of dietary antioxidants, Journal of Nutrition, 2003, 133, s. 1286–1290.
Mockute D., Bernotiene G., Judzentiene A., The essential oil of Origanum vulgare L. Spp. Vulgare growing wild in Vilnius district (Lithuania), Phytochemistry, 2001, 57, s. 65–69.
Tair A., Weiss E-K., Palade L.M., Loupassaki S., Makris D.P., Ioannou E., Roussis V., Kefalas P., Origanum species native to the island of Crete: in vitro antioxidant characteristics and liquid chromatography–mass spectrometry identification of major polyphenolic components, Natural Products Research, 2014, 28, s. 1284–1287.
Teixeira B., Marques A., Ramos C., Serrano C., Matos O., Neng N.R, Noguera J.M.F., Saraiva J.A., Nunes M.L., Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil, Journal of the Science of Food and Agriculture, 2013, 93, s. 2707–2714.
Cheikhyoussef A., Cheikhyoussef N., Ramadan M.F., Cold pressed oregano (Origanum vulgare) oil, [in:] Cold Pressed Oils, Ramadan, M.F. (ed.), Academic Press, Ch. 25, s. 289–293, 2020.
Issaoui M., Delgado A.M. Grading, labelling and standardization of edible oils, [in:] Ramadan M. (ed.), Fruit Oils: Chemistry and Functionality. Springer, Cham 2019.
Oregano, MedlinePlus, US National Library of Medicine, 2016 (Retrieved Nov. 8th 2020).
LaTonya M.M., Warning Letter: Young Living. Inspections, compliance, enforcement, and criminal investigations, US Food and Drug Administration (22 September, 2014). (Retrieved 7 Nov. 8th 2020).
McMillan, K.L., Warning Letter: Long Life Unlimited. Inspections, compliance, enforcement, and criminal investigations, US Food and Drug Administration
(31 January 2018), (Retrieved Oct. 22nd 2020).
Zambrana, I.A., Warning Letter: Absonutrix. Inspections, Compliance, Enforcement, and Criminal Investigations. US Food and Drug Administration (25 July, 2017). (Retrieved Oct. 22nd 2020).
NIST 11 Library, 2021. https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:start
Duncan D.B., Multiple range and multiple F tests, Biometrics, 1955, 11, s. 1–42.
Andersen A., Final report on the safety assessment of sodium p-chloro-m-cresol, p- chloro-mcresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol, International Journal of Toxicology, 2006, 25, s. 29–127.
FidytK., Fiedorowicz A., Strządała L., Szumny A., β‐caryophyllene and β‐ caryophyllene oxide-natural compounds of anticancer and analgesic properties, Cancer Medicine, 2016, 5, s. 3007–3017.
Yang J., Li Z., Guo L., Du J., Bae H.-J., Biosynthesis of β-caryophyllene, a novel terpenebased high-density biofuel precursor, using engineered Escherichia coli, Renewable Energy, 2016, 99, s. 216–223.
Tabasum F., Beenish B.N., Gousia G., Tahiya Q.T.A.B., Antioxidant potential and health benefits of cumin Antioxidant potential and health benefits of cumin, Journal of Medicinal Plants Studies, 2018, 6, s. 232–236.
Hu D., Coats J., Evaluation of the environmental fate of thymol and phenethyl propionate in the laboratory, Pest Management Science, 2008, 64, s. 775–779.
Nieto G., Biological activities of three essential oils of the Lamiaceae family, Medicines 2017, 4(3), 63.
Stelmakh V.A., Toxicological properties and the nature of the combined effect of aorthomenthane hydrocarbon mixtures, Gigiena truda i professionalnye zabolevanyia 1988, 9, s. 34–37.
Stelmakh, V.A., Talapin, V.I. & Pertsovskii, A.L. Experimntal data to establish MPEL of 1-methyl-2-isopropyl-benzene oin the air of work area, Gigiena truda i professionalnye zabolevanyia 1985, 3, s. 49–50.
TGSC Information System, 2020, http://www.thegoodscentscompany.com/data/rw1027901. html (Retrieved Nov. 8th 2021).
Barbieri G., Vallone S., Orsini F., Paradiso R., DePascale S., Negre-Zakharov F., Maggio A., Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.), Journal of Plant Physiology, 2012,
, s. 1737–1746.
Shulgin A.T., Sargent T., Naranjo C., The chemistry and psychopharmacology of nutmeg and of several phenylisopropylamines, Psychopharmacological Bulletin, 1967, 4(3), s. 13.
trans-Dihydrocarvone, http://www.perflavory.com/docs/doc1511171.html#tosafiu (Retrieved, Nov. 8th, 2021).
PubChem 2020, 2-isopropyl-5-methylanisole (Compound) https://pubchem.ncbi.nlm. nih.gov/compound/Thymol-methyl-ether#section=Related- Substances (Retrieved on Nov. 8th 2021).
Abu Khader M.M., Thymoquinone in the clinical treatment of cancer: Fact or fiction? Pharmacognosy Review, 2013, 7(14), s. 117–120.
Woo C.C., Kumar P., Seth G., Tan K.H.B., Thymoquinone: Potential cure for inflammatory disorders and cancer, Biochemistry and Pharmacology, 2012, 83, s. 443– 451.
Jeong J-G., Kim Y.S., Min Y.K., Kim S.H., Low concentration of 3-carene stimulates the differentiation of mouse osteoblastic MCC3T3E1 subclone 4 cells, Phytotherapy Research, 2008, 22, s. 18–22.
Lodi M., Terpenes 411:Delta 3-carene, EMBER Journal of Cannabis Culture, 2019, 3.
Krause S.T., Liao P., Crocoll C., Boachon B., Foerster C., Leidecker F., The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds v P450s and a short-chain dehydrogenase, PNAS, 2021, 118(52), e2110092118.
Pobrania
Sklep wydawnictwa:
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 411
Liczba cytowań: 0