Pattern Formation And Wound Healing

Philip K. Maini

DOI: http://dx.doi.org/10.12775/ths.2002.028

Abstract


One of the main immediate challenges in the biomedical sciences is the synthesis of the vast amount of data now available at the molecular and cellular levels for development, regulation and repair. This, in turn, requires an understanding of the interaction and coordination of a myriad of complex inter-related processes occurring on very different spatial and temporal scales. Mathematics provides the obvious language in which to develop and interpret these interactions, and a number of mathematical models have already been proposed to account for certain observed biological and medical phenomena. Here, we consider two areas of modelling, namely spatial patterning, and wound healing, both sharing the common underlying processes of cells creating and responding to signalling cues.

Keywords


biomedical sciences; developmental biology; spatial patterning; wound healing

Full Text:

PDF

References


Bard, J. B. L. (1981), A model for generating aspects of zebra and other mammalian coat patterns, J. theor. Biol., 93, 363-385.

Bard, J. B. L. and Lauder, I. (1974), How well does Turing’s theory of morphogenesis work? J. theor. Biol., 45, 501-531.

Benson, D. L., Maini, P. K. and Sherratt, J. A. (1998), Unravelling the Turing bifurcation using spatially varying diffusion coefficients, J. Math. Biol., 37, 381—417.

Britton, N. F. (1986), Reaction-Diffusion Equations and Their Applications to Biology, London, Academic Press.

Briimmer, F., Zempel, G., Buhle, P, Stein, J-C. and Hulser, D. F. (1991), Retinoic acid modulates gap junction permeability: A comparative study of dye spreading and ionic coupling in cultured cells, Exp. Cell. Res., 196, 158-163.

Castets, V., Dulos, E., Boissonade, J. and de Kepper, P, (1990), Experimental evidence of a sustained Turing-type equilibrium chemical pattern, Phys. Rev. Lett., 64(3), 2953- 2956.

Cocho, G., Perez-Pascual, R. and Rius, J. L. (1987a), Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation, J. theor. Biol., 125, 419—435.

Cocho, G., Peerez-Pascual, R., Rius J. L. and Soto, F. (1987b), Discrete systems, cell¬cell interactions and color pattern of animals. I. Clonal theory and cellular automata, J. theor. Biol., 125, 437^147.

Dale, P. D., Maini, P. K. and Sherratt, J. A. (1994), Mathematical modelling of comeal epithelium wound healing, Math. Biosciences 124, 127-147.

Dallon, J. C., Sherratt, J. A. and Maini, P. K. (1999), Mathematical modelling of extracellular matrix dynamics using discrete cells: Fiber orientation and tissue regeneration, J. theor. Biol., 199, 449-471.

Davidson, A., Koehl, M. A. R., Keller R. and Oster G. F., (1995), How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination, Dev., 121, 2005-2018.

Dillon, R., Maini P. K. and Othmer, H. G. (1994), Pattern formation in generalised Turing systems: I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol., 32, 345-393.

Edelstein-Keshet, L. (1988), Mathematical Models in Biology, New York, Random House.

Ermentrout, B. (1991), Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square, Proc. Roy. Soc. Lond., A434, 413-417.

Fife, P. (1979), Mathematical Aspects of Reacting and Diffusing Systems, Lect. Notes in Biomath., 28, Berlin, Heidelberg, New York, Springer-Verlag.

Gaffney, E. A., Maini, P. K., McCaig, C. D., Zhao M. and Forrester, J. V. (1999a), Modelling corneal epithelial wound closure in the presence of physiological electric fields via a moving boundary formalism, IMA J. Math. Appl. Biol, and Med. (in press).

Gaffney, E. A., Maini, P. K., Sherratt J. A. and Tuft S. (1999b), The mathematical modelling of cell kinetics in comeal epithelial wound healing, J. theor.Biol., 197, 15-40.

Gierer A. and Meinhardt H. (1972), A theory of biological pattern formation, Kybemetik, 12, 30-39.

Grindrod P. (1996), The Theory of Applications of Reaction-Diffusion Equations: Pattern and Waves, Oxford, Oxford University Press.

Jennings R. W. and Hunt T. K. (1992), Overview of postnatal wound healing, in Fetal Wound Healing, N. S. Adzick, M.T. Longaker (eds), New York, Elsevier, 25-52.

Johnson B. R. and Scott S. K. (1996), New approaches to chemical patterns, Chem. Soc. Rev., 265-273.

Keller E. F. and Segel L. A. (1971), Travelling bands of bacteria: a theoretical analysis, J. theor. Biol., 30, 235-248

De Kepper, P., Castets, V., Dulos, E. and Boissonade, J. (1991), Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction, Physica D, 49, 161-169.

Lengyel I. and Epstein, I. R. (1991), Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251, 650-652.

Maini, P. K., Benson, D. L. and Sherratt, J. A. (1992), Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients, IMA J.Math.Appl.Med. & Biol., 9, 197-213.

Maini, P. K., Myerscough, M. R., Winters K. H. and Murray, J. D. (1991), Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation, Bull. Math. Biol., 53, 701-719.

Maini, P. K., Painter, K. J. Chau, H. N. P. (1997), Spatial pattern formation in chemical and biological systems, Faraday Transactions, 93 (20), 3601-3610.

Maini P. K. and Solursh, M. (1991), Cellular mechanisms of pattern formation in the developing limb, Int. Rev. Cytology, 129, 91-133.

Meinhardt, H. (1982), Models of Biological Pattern Formation, London, Academic Press.

Meinhardt, H. (1995), The Algorithmic Beauty of Sea Shells, Berlin, Heidelberg, New York, Springer-Verlag.

Muller, S. C., Plesser T. and Hess, B. (1985), The structure of the core of the spiral wave in the Belousov-Zhabotinskii reaction, Science, 230, 661-663.

Murray, J. D. (1981), A pre-pattern formation mechanism for animal coat markings, J. theor. Biol., 88, 161-199.

Murray, J. D. (1993), Mathematical Biology, Berlin, Heidelberg, New York, Springer-Verlag.

Murray, J. D., Deeming, D. C. and Ferguson, M. W. J. (1990), Size dependent pigmentation pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism, Proc. Roy. Soc. Lond. B 239, 279-293.

Murray J. D. and Myerscough, M. R. (1991), Pigmentation pattern formation on snakes, J. theor. Biol., 149, 339-360.

Nagorcka, B. N. (1989), Wavelike isomorphic prepattems in development, J. theor. Biol., 137, 127-162.

Nijhout, H. F. (1990), A comprehensive model for colour pattern formation in butterflies, Proc. R. Soc. Lond. B 239, 81-113.

Odell, G. M., Oster, G., Alberch P., and Burnside, B. (1981), The mechanical basis of morphogenesis. I. Epithelial folding and invagination, Devi. Biol., 85, 446-462.

Olsen, L., Sherratt J.A. and Maini, P. K. (1996), A mathematical model for fibro- proliferative wound healing disorders, Bull. Math. Biol., 58, 787-808.

Oster G. F. and Murray, J. D. (1989), Pattern formation models and development, Zool., 251, 186-202.

Oster, G. F., Murray J. D. and Harris, A. K. (1983), Mechanical aspects of mesenchymal morphogenesis, J. Embryol.exp. Morph., 78, 83-125.

Panfilov A. V. and Holden A. V. (eds) (1997), Computational Biology of the Heart, Chichester, John Wiley & Sons.

Schnakenberg, J. (1979), Simple chemical reaction systems with limit cycle behaviour, J. theor. Biol., 81, 389-400.

Segel, L. A. (1984), Modelling Dynamic Phenomena in Molecular and Cellular Biology, Cambridge, Cambridge University Press M. Shah, D.M. Foreman, M. W. J.

Ferguson, 1992, Control of scarring in adult wounds by neutralising antibody to transforming growth factor p, Lancet, 339, 213-214.

Steinberg, M. S. (1970), Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. exp. Zool., 173, 395-434.

Sulsky, D., Childress S. and Percus, J. K. (1984), A model of cell sorting, J. theor. Biol., 106, 275-301.

Thomas, D. (1975), Artifical enzyme membranes, transport, memory and oscillatory phenomena, in Analysis and Control of Immobilized Enzyme Systems, ed. D. Thomas and J.-P. Kemevez, Springer, Berlin, Heidelberg, New York, 115-150.

Thompson, D.W. (1992), On Growth and Form, Cambridge, Cambridge University Press.

Turing, A. M. (1952), The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond. B 327, 37-72.

Weliky, M., Minsuk, S., Keller R., and Oster, G. F. (1991), Notochord morphogenesis in Xenopus laevis: simulation of cell behaviour underlying tissue convergence and extension, Dev., 113, 1231-1244.

Weliky M. and Oster, G. F. (1990), The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly, Dev., 109, 373-386.

Welsh, B. J., Gomatam J. and Burgess, A. E. (1983), Three-dimensional chemical waves in the Belousov-Zhabotinskii reaction, Nature, 340, 611-614.

Winfree, A. T. (1972), Spiral waves of chemical activity, Science, 175, 634-636. Winfree, A. T. (1974), Rotating chemical reactions, Sci. Amer., 230(6), 82-95.

Wolpert, L. (1969), Positional information and the spatial pattern of cellular differentiation, J. theor. Biol., 25, 1-47.

Wolpert, L. and Hombruch, A. (1990), Double anterior chick limb buds and models for cartilage rudiment specification, Development, 109, 961-966.

Zaikin, A. N. and Zhabotinskii, A. M. (1970), Concentration wave propagation in two- dimensional liquid-phase self-organising system, Nature, 225, 535-537.

Zykov, V. S. (1987), Simulation of Wave Processes in Excitable Media, Manchester, Manchester University Press.


Refbacks

  • There are currently no refbacks.





ISSN 2392-1196 (online)

Partnerzy platformy czasopism