Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Scientific Counsil
    • Indexing
    • International Partners
    • Ethical standards
    • Privacy Statement
    • Publisher
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Torun International Studies

A BIBLIOMETRIC ANALYSIS OF SECTORAL SYSTEMS OF INNOVATION
  • Home
  • /
  • A BIBLIOMETRIC ANALYSIS OF SECTORAL SYSTEMS OF INNOVATION
  1. Home /
  2. Archives /
  3. Vol. 1 No. 21 (2025) /
  4. Articles

A BIBLIOMETRIC ANALYSIS OF SECTORAL SYSTEMS OF INNOVATION

Authors

  • Piotr Dzikowski Uniwersytet Zielonogórski http://orcid.org/0000-0002-5067-8552

DOI:

https://doi.org/10.12775/TIS.2025.007

Keywords

cluster analysis, sectoral systems of innovation, bibliometrics

Abstract

Purpose: The study aims to explore the dynamics of Sectoral Systems of Innovation (SSIs), emphasizing their role in linking innovation processes with sectoral dynamics. It investigates key contributors, thematic clusters, trends, and the interplay of institutions, technologies, and actors in fostering innovation across sectors.

Methodology/approach: A bibliometric analysis was conducted using data from the Web of Science database, focusing on 237 selected papers published between 2002 and 2024. Citation analysis and network mapping were employed to assess productivity, impact, and thematic interconnections. Tools like Bibexcel and VOSviewer were used to extract insights on authors, journals, institutions, and countries.

Findings: The research identifies significant trends in SSIs literature, with sustainability transitions emerging as a critical focus area. Thematic clusters reveal strong academic interest in “Innovation and Sustainability” and “Sectoral Systems and Catch-Up Dynamics”. Key contributors, including leading authors, journals, and institutions, demonstrate varied research strategies balancing productivity and impact. The study also highlights gaps in existing research, particularly in niche areas such as forestry innovation systems.

Originality/value: This study provides a comprehensive bibliometric perspective on SSIs, bridging gaps in qualitative research, and offering actionable insights into innovation systems’ evolution. It contributes to the understanding of policy frameworks and strategies that can drive innovation and sustainability transitions across diverse sectors.

Author Biography

Piotr Dzikowski, Uniwersytet Zielonogórski

Adiunkt w Zakładzie Innowacji i Przedsiębiorczości, Wydział Ekonomii i Zarządzania, Uniwersytet Zielonogórski

References

Aboal, D., Rovira, F., & Veneri, F. (2018). Knowledge networks for innovation in the forestry sector: Multinational companies in Uruguay. Forest Policy and Economics, 97, 9–20. https://doi.org/10.1016/j.forpol.2018.08.013

Adams, P., Fontana, R., & Malerba, F. (2013). The magnitude of innovation by demand in a sectoral system: The role of industrial users in semiconductors. Research Policy, 42(1), 1–14. https://doi.org/10.1016/j.respol.2012.05.011

Aguiar-Hernandez, C., & Breetz, H. L. (2024). The adverse effects of political instability on innovation systems: The case of Mexico’s wind and solar sector. Technovation, 136, 103083. https://doi.org/10.1016/j.technovation.2024.103083

Álvarez Scanniello, J., & Menéndez, M. de las M. (2024). Technological Change and Productivity Growth in Livestock Systems: Denmark, New Zealand and Uruguay (1870–1970). Scandinavian Economic History Review, 72(3), 266–286. https://doi.org/10.1080/03585522.2024.2342788

Andersen, M. M., Ogallo, E., & Diniz Faria, L. G. (2022). Green economic change in Africa – green and circular innovation trends, conditions and dynamics in Kenyan companies. Innovation and Development, 12(2), 231–257. https://doi.org/10.1080/ 2157930X.2021.1876586

Andrews-Speed, P., Xu, X., Jie, D., Chen, S., & Zia, M. U. (2022). Deficiencies in China’s innovation systems for coal-bed methane development: Comparison with the USA. Journal of Science and Technology Policy Management, 14(3), 511–528. https:// doi.org/10.1108/JSTPM-04-2020-0071

Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37(3), 407–429. https://doi.org/10.1016/j.respol.2007.12.003

Berkers, E., & Geels, F. W. (2011). System innovation through stepwise reconfiguration: The case of technological transitions in Dutch greenhouse horticulture (1930– 1980). Technology Analysis & Strategic Management, 23(3), 227–247. https://doi.or g/10.1080/09537325.2011.550392

Berthe, A., Grouiez, P., & Fautras, M. (2022). Heterogeneity of Agricultural Biogas Plants in France: A Sectoral System of Innovation Perspective. Journal of Innovation Economics & Management, 38(2), 11–34.

Binz, C., Gosens, J., Hansen, T., & Hansen, U. E. (2017). Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China. World Development, 96, 418–437. https://doi.org/10.1016/j.worlddev.2017.03.027

Binz, C., & Truffer, B. (2017). Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts. Research Policy, 46(7), 1284– 1298. https://doi.org/10.1016/j.respol.2017.05.012

Bowman, A., & Chisoro, S. (2024). Inclusive agro-industrial development and sectoral systems of innovation: Insights from South Africa. Innovation and Development, 0(0), 1–30. https://doi.org/10.1080/2157930X.2024.2312311

Capone, G., Li, D., & Malerba, F. (2021). Catch-up and the entry strategies of latecomers: Chinese firms in the mobile phone sector. Industrial and Corporate Change, 30(1), 189–213. https://doi.org/10.1093/icc/dtaa061

Carlsson, B., & Stankiewicz, R. (1991). On the nature, function and composition of technological systems. Journal of Evolutionary Economics, 1(2), 93–118. https://doi. org/10.1007/BF01224915

Chung, S. (2002). Building a national innovation system through regional innovation systems. Technovation, 22(8), 485–491. https://doi.org/10.1016/S0166-4972 (01)00035-9

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382– 1402. https://doi.org/10.1002/asi.21525

Cooke, P., Gomez Uranga, M., & Etxebarria, G. (1997). Regional innovation systems: Institutional and organisational dimensions. Research Policy, 26(4), 475–491. https://doi.org/10.1016/S0048-7333(97)00025-5

Cruz, S. C. S., & Teixeira, A. A. C. (2010). The Evolution of the Cluster Literature: Shedding Light on the Regional Studies–Regional Science Debate. Regional Studies, 44(9), 1263–1288. https://doi.org/10.1080/00343400903234670

Cusmano, L., Morrison, A., & Rabellotti, R. (2010). Catching up Trajectories in the Wine Sector: A Comparative Study of Chile, Italy, and South Africa. World Development, 38(11), 1588–1602. https://doi.org/10.1016/j.worlddev.2010.05.002

Dahmén, E. (1988). ‘Development blocks’ in industrial economics. Scandinavian Economic History Review, 36(1), 3–14. https://doi.org/10.1080/03585522.1988.1040 8102

Damioli, G., Ghisetti, C., Vertesy, D., & Vezzulli, A. (2021). Open for growth? Evidence on EU countries and sectors. Economics of Innovation and New Technology, 30(2), 197–219. https://doi.org/10.1080/10438599.2019.1688459

Debref, R. (2012). The Paradoxes of Environmental Innovations: The Case of Green Chemistry. Journal of Innovation Economics & Management, 9(1), 83–102. https:// doi.org/10.3917/jie.009.0083

Diercks, G., Larsen, H., & Steward, F. (2019). Transformative innovation policy: Addressing variety in an emerging policy paradigm. Research Policy, 48(4), 880–894. https://doi.org/10.1016/j.respol.2018.10.028

Doloreux, D., & Gomez, I. P. (2017). A review of (almost) 20 years of regional innovation systems research. European Planning Studies, 25(3), 371–387. https://doi.org/1 0.1080/09654313.2016.1244516

Edquist, C. (2005). Systems of Innovation: Perspectives and Challenges. In J. Fagerberg, D. C. Mowery, & R. Nelson (Eds.), The Oxford Handbook of Innovation (pp. 181– 208). Oxford University Press.

Engen, O. A., Simensen, E. O., & Taran, T. (2018). The evolving sectoral innovation system for upstream oil and gas in Norway (pp. 23–39). Routledge.

Figueiredo, P. N., Larsen, H., & Hansen, U. E. (2020). The role of interactive learning in innovation capability building in multinational subsidiaries: A micro-level study of biotechnology in Brazil. Research Policy, 49(6), 103995. https://doi. org/10.1016/j.respol.2020.103995

Fontana, R., Malerba, F., & Marinoni, A. (2015). Knowledge intensive entrepreneurship in different sectoral systems: A taxonomy. Dynamics of Knowledge Intensive Entrepreneurship: Business Strategy and Public Policy, 191–213.

Fukugawa, N. (2018). Is the impact of incubator’s ability on incubation performance contingent on technologies and life cycle stages of startups?: Evidence from Japan. International Entrepreneurship and Management Journal, 14(2), 457–478. https:// doi.org/10.1007/s11365-017-0468-1

Gallouj, F., Weber, K. M., Stare, M., & Rubalcaba, L. (2015). The futures of the service economy in Europe: A foresight analysis. Technological Forecasting and Social Change, 94, 80–96. https://doi.org/10.1016/j.techfore.2014.06.009

Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Research Policy, 33(6), 897–920. https://doi.org/10.1016/j.respol.2004.01.015

Geels, F. W. (2005a). The dynamics of transitions in socio-technical systems: A multilevel analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technology Analysis & Strategic Management, 17(4), 445–476. https:// doi.org/10.1080/09537320500357319

Geels, F. W. (2005b). The dynamics of transitions in socio-technical systems: A multilevel analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technology Analysis & Strategic Management, 17(4), 445–476. https:// doi.org/10.1080/09537320500357319

Geels, F. W. (2006). Co-evolutionary and multi-level dynamics in transitions: The transformation of aviation systems and the shift from propeller to turbojet (1930– 1970). Technovation, 26(9), 999–1016. https://doi.org/10.1016/j.technovation. 2005.08.010

Grimm, A., & Walz, R. (2024). Current and future roles of the automotive and ICT sectoral systems in autonomous driving—Using the innovation system approach to assess value chain transformation. Technological Forecasting and Social Change, 198, 122990. https://doi.org/10.1016/j.techfore.2023.122990

Hegerty, S. W., & Weresa, M. (2023). The determinants of innovative capacity in the medical sector in Central Europe and across the European Union. Technological and Economic Development of Economy, 29(1), Article 1. https://doi.org/10.3846/ tede.2022.17737

Intarakumnerd, P., & Chaoroenporn, P. (2013). The roles of intermediaries in sectoral innovation system in developing countries: Public organizations versus private organizations. Asian Journal of Technology Innovation, 21(1), 108–119. https://doi.org /10.1080/19761597.2013.810949

Intarakumnerd, P., & Gerdsri, N. (2014). Implications of Technology Management and Policy on the Development of a Sectoral Innovation System: Lessons Learned Through the Evolution of Thai Automotive Sector. International Journal of Innovation and Technology Management, 11(03), 1440009. https://doi.org/10.1142/ S0219877014400094

Iyer, C. G. (2016). Impact of entrepreneur on the sectoral system of innovation: Case study of the Indian crude oil refining industry. Technological Forecasting and Social Change, 102, 102–111. https://doi.org/10.1016/j.techfore.2015.02.019

Jarský, V. (2015). Analysis of the sectoral innovation system for forestry of the Czech Republic. Does it even exist? Forest Policy and Economics, 59, 56–65. https://doi. org/10.1016/j.forpol.2015.05.012

Kang, D.-I., & Choung, J.-Y. (2023). Repercussions of innovation actors’ pursuit of institutional transition: Evidence from emerging innovations in Korea. Technology Analysis & Strategic Management, 35(2), 194–207. https://doi.org/10.1080/09537 325.2021.1971189

Kern, F., & Markard, J. (2016). Analysing Energy Transitions: Combining Insights from Transition Studies and International Political Economy. In T. Van de Graaf, B. K. Sovacool, A. Ghosh, F. Kern, & M. T. Klare (Eds.), The Palgrave Handbook of the International Political Economy of Energy (pp. 291–318). Palgrave Macmillan UK. https://doi.org/10.1057/978-1-137-55631-8_12

Kim, J.-S., & Flanagan, K. (2024). The use of foresight to anticipate and prioritise innovation system failures: The case of machine learning in broadcasting in South Korea. Futures, 163, 103454. https://doi.org/10.1016/j.futures.2024.103454

Kim, Y.-Z., & Lee, K. (2008). Sectoral Innovation System and a Technological Catchup: The Case of the Capital Goods Industry in Korea. Global Economic Review, 37(2), 135–155. https://doi.org/10.1080/12265080802021151

Klepper, S. (1996). Entry, Exit, Growth, and Innovation over the Product Life Cycle. American Economic Review, 86(3), 562–583. Scopus.

Kristinsson, K., & Rao, R. (2008). Interactive Learning or Technology Transfer as a Way to Catch‐Up? Analysing the Wind Energy Industry in Denmark and India. Industry and Innovation, 15(3), 297–320. https://doi.org/10.1080/13662710802040903

Kubeczko, K., Rametsteiner, E., & Weiss, G. (2006). The role of sectoral and regional innovation systems in supporting innovations in forestry. Forest Policy and Economics, 8(7), 704–715. https://doi.org/10.1016/j.forpol.2005.06.011

Landini, F., Lema, R., & Malerba, F. (2020). Demand-led catch-up: A history-friendly model of latecomer development in the global green economy. Industrial and Corporate Change, 29(5), 1297–1318. https://doi.org/10.1093/icc/dtaa038

Lee, K. (2019). The Art of Economic Catch-Up: Barriers, Detours and Leapfrogging in Innovation Systems. Cambridge University Press. https://doi.org/10.1017/9781108588232

Lee, K., & Malerba, F. (2017). Catch-up cycles and changes in industrial leadership:Windows of opportunity and responses of firms and countries in the evolution of sectoral systems. Research Policy, 46(2), 338–351. https://doi.org/10.1016/j.respol.2016.09.006

Leeuwen, T. N. V., Visser, M. S., Moed, H. F., Nederhof, T. J., & Raan, A. F. J. V. (2003). The Holy Grail of science policy: Exploring and combining bibliometric tools in search of scientific excellence. Scientometrics, 57(2), 257–280. https://doi. org/10.1023/A:1024141819302

Li, D., Capone, G., & Malerba, F. (2019). The long march to catch-up: A historyfriendly model of China’s mobile communications industry. Research Policy, 48(3), 649–664. https://doi.org/10.1016/j.respol.2018.10.019

Lundvall, B. A. (1992). National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning. Pinter.

Magnusson, T., & Berggren, C. (2018). Competing innovation systems and the need for redeployment in sustainability transitions. Technological Forecasting and Social Change, 126, 217–230. https://doi.org/10.1016/j.techfore.2017.08.014

Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264. https://doi.org/10.1016/S0048-7333(01)00139-1

Malerba, F. (2004). Sectoral Systems of Innovation: Concepts, Issues and Analyses of Six Major Sectors in Europe. Cambridge University Press.

Malerba, F. (2005a). Sectoral systems of innovation: A framework for linking innovation to the knowledge base, structure and dynamics of sectors. Economics of Innovation and New Technology, 14(1–2), 63–82. https://doi.org/10.1080/1043859042000228688

Malerba, F. (2005b). Sectoral systems of innovation: A framework for linking innovation to the knowledge base, structure and dynamics of sectors. Economics of Innovation and New Technology, 14(1–2), 63–82. https://doi.org/10.1080/1043859042000228688

Malerba, F. (2018). Moving Forward in Sectoral Systems Research: Taxonomies, Evolution and Modelling. In J. Niosi (Ed.), Innovation Systems, Policy and Management (pp. 27– 52). Cambridge University Press. https://doi.org/10.1017/9781108529525.003

Malerba, F., & McKelvey, M. (2019). Knowledge-Intensive Innovative Entrepreneurship. Foundations and Trends® in Entrepreneurship, 14(6), 555–681. https://doi.org/ 10.1561/0300000075

Malerba, F., & Nelson, R. (2011). Learning and catching up in different sectoral systems: Evidence from six industries. Industrial and Corporate Change, 20(6), 1645– 1675. https://doi.org/10.1093/icc/dtr062

Malerba, F., & Orsenigo, L. (1993). Technological Regimes and Firm Bebavior. Industrial and Corporate Change, 2(1), 45–71. https://doi.org/10.1093/icc/2.1.45

Malerba, F., & Orsenigo, L. (1997). Technological Regimes and Sectoral Patterns of Innovative Activities. Industrial & Corporate Change, 6(1), 83–117. https://doi. org/10.1093/icc/6.1.83

Malhotra, A., Schmidt, T. S., & Huenteler, J. (2019). The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies. Technological Forecasting and Social Change, 146, 464–487. https://doi. org/10.1016/j.techfore.2019.04.018

Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, 41(6), 955–967. https://doi. org/10.1016/j.respol.2012.02.013

Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, 37(4), 596–615. https://doi.org/10.1016/j.respol.2008.01.004

McKelvey, M., Alm, H., & Riccaboni, M. (2003). Does co-location matter for formal knowledge collaboration in the Swedish biotechnology–pharmaceutical sector? Research Policy, 32(3), 483–501. https://doi.org/10.1016/S0048-7333(02)00020-3

Merigó, J. M., Cancino, C. A., Coronado, F., & Urbano, D. (2016). Academic research in innovation: A country analysis. Scientometrics, 108(2), 559–593. https:// doi.org/10.1007/s11192-016-1984-4

Meuer, J., Rupietta, C., & Backes-Gellner, U. (2015). Layers of co-existing innovation systems. Research Policy, 44(4), 888–910. https://doi.org/10.1016/j.respol.2015.01.013

Nelson, R., & Winter, S. G. (1982). An Evolutionary Theory of Economic Change. Harvard University Press.

Nikas, A., Doukas, H., Lieu, J., Tinoco, R. A., Charisopoulos, V., & Gaast, W. van der. (2017). Managing stakeholder knowledge for the evaluation of innovation systems in the face of climate change. Journal of Knowledge Management, 21(5), 1013–1034. https://doi.org/10.1108/JKM-01-2017-0006

Niosi, J. (2011). Complexity and path dependence in biotechnology innovation systems. Industrial and Corporate Change, 20(6), 1795–1826. https://doi.org/10.1093/ icc/dtr065

Patana, A.-S., Pihlajamaa, M., Polvinen, K., Carleton, T., & Kanto, L. (2012). Qualitative evaluation of the finnish life science innovation system with comparison to the San Francisco Bay Area. 2012 Proceedings of PICMET ’12: Technology Management for Emerging Technologies, 3083–3094. https://ieeexplore.ieee.org/abstract/ document/6304326

Persson, O., Danell, R., & Schneider, J. W. (2009). How to use Bibexcel for various types of bibliometric analysis. Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at His 60th Birthday, 9–24.

Proksch, D., Busch-Casler, J., Haberstroh, M. M., & Pinkwart, A. (2019). National health innovation systems: Clustering the OECD countries by innovative output in healthcare using a multi indicator approach. Research Policy, 48(1), 169–179. https://doi.org/10.1016/j.respol.2018.08.004

Rakas, M., & Hain, D. S. (2019). The state of innovation system research: What happens beneath the surface? Research Policy, 48(9), 103787. https://doi.org/10.1016/j.respol.2019.04.011

Rametsteiner, E., & Weiss, G. (2006). Innovation and innovation policy in forestry: Linking innovation process with systems models. Forest Policy and Economics, 8(7), 691–703. https://doi.org/10.1016/j.forpol.2005.06.009

Rikap, C. (2022). Becoming an intellectual monopoly by relying on the national innovation system: The State Grid Corporation of China’s experience. Research Policy, 51(4), 104472. https://doi.org/10.1016/j.respol.2021.104472

Rogge, K. S., & Hoffmann, V. H. (2010). The impact of the EU ETS on the sectoral innovation system for power generation technologies – Findings for Germany. Energy Policy, 38(12), 7639–7652. https://doi.org/10.1016/j.enpol.2010.07.047

Saritas, O., & Nugroho, Y. (2012). Mapping issues and envisaging futures: An evolutionary scenario approach. Technological Forecasting and Social Change, 79(3), 509–529. https://doi.org/10.1016/j.techfore.2011.09.005

Savory, C., & Fortune, J. (2014). An emergent sectoral innovation system for healthcare services. International Journal of Public Sector Management, 27(6), 512–529. https:// doi.org/10.1108/IJPSM-03-2014-0036

Schlaile, M. P., Urmetzer, S., Blok, V., Andersen, A. D., Timmermans, J., Mueller, M., Fagerberg, J., & Pyka, A. (2017). Innovation Systems for Transformations towards Sustainability? Taking the Normative Dimension Seriously. Sustainability, 9(12), Article 12. https://doi.org/10.3390/su9122253

Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450–1467. https://doi.org/10.1016/j.respol.2014.02.005

Smith, H., & Romeo, S. (2016). Regional Environments and Sector Developments: The Biotech Sector in Oxfordshire. Journal of the Knowledge Economy, 7(4), 905–919. https://doi.org/10.1007/s13132-015-0303-2

Stephan, A., Schmidt, T. S., Bening, C. R., & Hoffmann, V. H. (2017). The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan. Research Policy, 46(4), 709–723. https://doi.org/10.1016/j.respol.2017.01.009

Sun, Y., & Grimes, S. (2015). The emerging dynamic structure of national innovation studies: A bibliometric analysis. Scientometrics, 106(1), 17–40. https://doi.org/10.1007/s11192-015-1778-0

Teh, K., & Roos, G. (2015). A patent perspective of South Australian innovation: An indicator within the regional innovation system story. In Integrating Innovation: South Australian Entrepreneurship Systems and Strategies (pp. 63–89). University of Adelaide Press.

Teixeira, A. A. C. (2014). Evolution, roots and influence of the literature on National Systems of Innovation: A bibliometric account. Cambridge Journal of Economics, 38(1), 181–214. https://doi.org/10.1093/cje/bet022

Thitinunsomboon, S., Chairatana, P., & Keeratipibul, S. (2008). Sectoral innovation systems in agriculture: The case of rice in Thailand. Asian Journal of Technology Innovation, 16(1), 83–100. https://doi.org/10.1080/19761597.2008.9668648

Truffer, B., & Coenen, L. (2012). Environmental Innovation and Sustainability Transitions in Regional Studies. Regional Studies, 46(1), 1–21. https://doi.org/10.1080/0 0343404.2012.646164

Tuncel, C. O., & Polat, A. (2016). Sectoral System of Innovation and Sources of Technological Change in Machinery Industry: An Investigation on Turkish Machinery Industry1. Procedia - Social and Behavioral Sciences, 229, 214–225. https://doi. org/10.1016/j.sbspro.2016.07.131

Turovets, J., Proskuryakova, L., Starodubtseva, A., & Bianco, V. (2021). Green Digitalization in the Electric Power Industry. Foresight and STI Governance, 15(3), Article 3. https://doi.org/10.17323/2500-2597.2021.3.35.51

Utterback, J. M. (1994). Mastering the Dynamics of Innovation: How Companies Can Seize Opportunities in the Face of Technological Change. Harvard Business School Press.

van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi. org/10.1007/s11192-009-0146-3

van Leeuwen, T. (2006). The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics, 66(1), 133–154. https://doi.org/10.1007/s11192-006-0010-7

van Raan, Anthony F. J. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. Technikfolgenabschätzung-Theorie Und Praxis/Technology Assessment-Theory and Practice, 1(12), 20–29.

Van Rooij, A., Berkers, E., Davids, M., & Veraart, F. (2008). National innovation systems and international knowledge flows: An exploratory investigation with the case of the Netherlands. Technology Analysis & Strategic Management, 20(2), 149–168. https://doi.org/10.1080/09537320801931291

Wangwe, S., Simonetti, R., Tibandebage, P., Mackintosh, M., Israel, C., & Mujinja, P. G. M. (2022). Upgrading under globalization in health-related industries in Tanzania: The case for dynamic industrial deepening. Innovation and Development, 12(3), 479–496. https://doi.org/10.1080/2157930X.2021.1886415

Weber, K. M., & Rohracher, H. (2012). Legitimizing research, technology and innovation policies for transformative change: Combining insights from innovation systems and multi-level perspective in a comprehensive ‘failures’ framework. Research Policy, 41(6), 1037–1047. https://doi.org/10.1016/j.respol.2011.10.01558

Xiong, J., Zhao, S., Meng, Y., Xu, L., & Kim, S.-Y. (2022). How latecomers catch up to build an energy-saving industry: The case of the Chinese electric vehicle industry 1995–2018. Energy Policy, 161, 112725. https://doi.org/10.1016/j.enpol.2021.112725

Zhou, Y., Miao, Z., & Urban, F. (2020). China’s leadership in the hydropower sector: Identifying green windows of opportunity for technological catch-up. Industrial and

Corporate Change, 29(5), 1319–1343. https://doi.org/10.1093/icc/dtaa039

Downloads

  • PDF

Published

2025-06-30

How to Cite

Dzikowski, P. (2025). A BIBLIOMETRIC ANALYSIS OF SECTORAL SYSTEMS OF INNOVATION. Torun International Studies, 1(21), 133–158. https://doi.org/10.12775/TIS.2025.007
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 1 No. 21 (2025)

Section

Articles

License

Copyright (c) 2025 Piotr Dzikowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 111
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

cluster analysis, sectoral systems of innovation, bibliometrics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop