Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada Naukowa
    • Indeksowanie
    • Partnerzy zagraniczni
    • Standardy etyczne
    • Polityka prywatności
    • Wydawca
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Torun International Studies

INTER-CONNECTEDNESS BETWEEN DEVELOPED AND VISEGRAD STOCK MARKETS DURING COVID-19 PANDEMIC AND RUSSIA-UKRAINE WAR
  • Strona domowa
  • /
  • INTER-CONNECTEDNESS BETWEEN DEVELOPED AND VISEGRAD STOCK MARKETS DURING COVID-19 PANDEMIC AND RUSSIA-UKRAINE WAR
  1. Strona domowa /
  2. Archiwum /
  3. Tom 1 Nr 19 (2024) /
  4. Artykuły

INTER-CONNECTEDNESS BETWEEN DEVELOPED AND VISEGRAD STOCK MARKETS DURING COVID-19 PANDEMIC AND RUSSIA-UKRAINE WAR

Autor

  • Iza Izabela SGH Warsaw School of Economics https://orcid.org/0000-0002-7385-6286
  • Dorota Żebrowska-Suchodolska https://orcid.org/0000-0003-1230-6413

DOI:

https://doi.org/10.12775/TIS.2024.005

Słowa kluczowe

stock markets, Visegrad, Covid-19 pandemic, Russia-Ukraine war, Russia

Abstrakt

Purpose: The study checks relations between different developed and Visegrad stock markets and mainly concentrates on the analysis of the American market influence (reflected by S&P500) on other stock markets. It examines the influence of crisis situations such as Covid-19 pandemic and Russia-Ukraine war on the strength of the linkage between markets.

Methodology/approach: The study of changes in the dependence of stock market indices over 2018 – 2023 is conducted using rolling windows for the Pearson correlation coefficient. The similarity strength of indices is indicated using the DTW measure. The influence of the S&P500 index on other stock indices is examined by the Granger causality.

Findings: We show that both the Covid-19 pandemic and the war increased the linkage between stock markets, although for the latter this rule refers only to markets that are geographically close to the conflict zone. The research also shows that the American stock exchanges are the most strongly interconnected. Another important notice is that crises decrease the similarity of shapes between stock exchanges represented by market indices. Moreover, greater similarity between stock exchanges leads to lower volatility in correlations over time.

Originality/value: The paper adds value in three aspects. The first one is that it examines changes in relations between indices, both in their correlations and their similarities strength during Covid-19 pandemic and Russia-Ukraine war – recent crisis situations. Contrary to the previous literature which is rather concentrated on the Covid-19 pandemic and its influence on stock markets, we show that such events that are not global also influence relations between stock markets close to the conflict zone. The second one is combining in one paper connections between both different indices from developed countries and Visegrad countries. The third one is using DTW method rarely used for financial time series analysis to examine shapes similarity between S&P500 index and so many stock markets, both from developed and Visegrad countries in one paper.

Bibliografia

Ahmed, S., Hasan, M. M., & Kamal, M. R. (2022) Russia–Ukraine crisis: The effects on the European stock market. European Financial Management, 29(4), 1078–1118. https://doi.org/10.1111/eufm.12386

Akram, M., Hunjra, A.I., Malik, I.R., & Al-Faryan. (2023). Dynamic connectedness among Pakistani stock markets and its major trading partners. International Journal of Emerging Markets, ahead of print.

Al-Yahyaee, K.H., Mensi, W., Al-Jarrah, I.M.W., & Tiwari, A.K. (2019). Testing for the Granger-causality between returns in the U.S. and GIPSI stock markets. Physica A: Statistical Mechanics and its Applications, 531(120950). https://doi.org/10.1016/j.physa.2019.04.186

Anh, D. T., & Thanh, L. H. (2015). An efficient implementation of k-means clustering for time series data with DTW distance. International, Journal of Business Intelligence and Data Mining, 10(3), 213-232. https://doi.org/10.1504/IJBIDM.2015.071311

Barunik, J., Kocenda, E., & Vacha, L. (2016). Asymmetric Connectedness on the U.S. Stock Market: Bad and Good Volatility Spillovers. Journal of Financial Markets, 27 (C), 55-78. https://doi.org/10.1016/j.finmar.2015.09.003

Baur, D., & Jung, R.C. (2006). Return and volatility linkages between the US and the German stock market. Journal of International Money and Finance, 24(4), 598-613. https://doi.org/10.1016/j.jimonfin.2005.11.010

Becker, K.G., Finnerty, J.E., & Gupta, M. (1990). The international relation between the U.S. and Japanese stock markets. The Journal of Finance, 45(4), 1297-1306. https://doi.org/10.2307/2328726

Bernardelli, M., & Próchniak, M. (2023). The Analysis of Economic Growth and Monetary Policy for Poland and Selected Central and Eastern European Countries with the Use of Dynamic Time Warping. In E. Bukalska, T. Kijek & B. Sergi (Eds.), Modeling Economic Growth in Contemporary Poland (pp. 189-207). Emerald Publishing Limited.

Blahun, I.S., & Blahun, I.I. (2020). The Relationship Between World and Local Stock Indices. Montenegrin Journal of Economics, 16(1), 55-67. https://doi.org/10.14254/1800-5845/2020.16-1.4

Boungou, W., & Yatié, A. (2022). The impact of the Ukraine–Russia war on world stock market returns. Economics Letters, 215(C), 110516. https://doi.org/10.1016/j.econlet.2022.110516

Cassisi, C., Montalto, P., Aliotta, M., Cannata, A., & Pulvirenti, A. (2012). Similarity measures and dimensionality reduction techniques for time series data mining. In Karahoca, A. (Ed.), Advances in data mining knowledge discovery and applications (pp. 71-96). IntechOpen. https://doi.org/10.5772/49941

Chesnay, F., & Jondeau, E. (2001). Does Correlation Between Stock Returns Really Increase During Turbulent Periods? Economic Notes, 30(1), 53-80.

Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49(4), 1057-1072. https://doi.org/10.2307/1912517

Dickey, D.A., & Fuller W.A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427-431. https://doi.org/10.2307/2286348

Gilenko, E. & Fedorova, E. (2014). Internal and external spillover effects for the BRIC countries: multivariate GARCH-in-mean approach. Research in International Business and Finance, 31, 32-45. https://doi.org/10.1016/j.ribaf.2013.11.002

Granger, C.W.J. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 16(1), 121-130. https://doi.org/10.1016/0304-4076(81)90079-8

Habiba, U.E., Peilong, S., Zhang, W., & Hamid, K. (2020). International stock markets Integration and dynamics of volatility spillover between the USA and South Asian markets: evidence from Global financial crisis. Journal of Asia Business Studies, 14(5), 779-794. https://doi.org/10.1108/JABS-03-2019-0071

Habibi, H., & Mohammadi, H. (2022). Return and volatility spillovers across the Western and MENA countries. The North American Journal of Economics and Finance, 60(C), 101642. https://doi.org/10.1016/j.najef.2022.101642

Han, T., Peng Q., & Zhu Z. (2019). Discovering the Lead-Lag Relationships in Financial Markets: A Method based on DTW. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 4262-4267. https://doi.org/10.1109/CAC48633.2019.8997013

Huang, L.P., Qiu, T., Chen, G., & Zhong, L.X. (2019). European union effect on financial correlation dynamics. Physica A: Statistical Mechanics and its Applications, 528(121457). https://doi.org/10.1016/j.physa.2019.121457

Hung N.T. (2020). An analysis of CEE equity market integration and their volatility spillover effects. European Journal of Management and Business Economics, 21(1), 23-40. https://doi.org/10.1108/EJMBE-01-2019-0007

Hung, N.T. (2021). Financial connectedness of GCC emerging stock markets. Eurasian Economic Review, 11, 753–773. https://doi.org/10.1007/s40822-021-00185-2

Jebran, K. (2018). Volatility spillover between stock and foreign exchange market of China: evidence from subprime Asian financial crisis. Journal of Asia Business Studies, 12(2), 220-232. https://doi.org/10.1108/JABS-01-2016-0003

Lee, S.B., & Kim, K.J. (1993). Does the October 1987 crash strengthen the co-movements among national stock markets? Review of Financial Economics, 3(1), 89-102. https://doi.org/10.1002/j.1873-5924.1993.tb00574.x.

Madaleno, M., & Pinho C. (2012). International stock market indices comovements: a new look. International Journal of Finance and Economics, 17, 89-102, https://doi.org/10.1002/ijfe.448

Mensi, W., Boubaker, F.Z., Al-Yahyaee, K.H., & Kang, S.H. (2018). Dynamic volatility spillovers and connectedness between global, regional, and GIPSI stock markets. Finance Research Letters, 25, 230-238. https://doi.org/10.1016/j.frl.2017.10.032

Miljkovic, D., & Vatsa, P. (2023). On the linkages between energy and agricultural commodity prices: A dynamic time warping analysis. International Review of Financial Analysis, 90(102834). https://doi.org/10.1016/j.irfa.2023.102834

Panda, A.K., & Nanda S. (2017). Short-term and long-term Interconnectedness of stock returns in Western Europe and the global market. Financial Innovation, 3(1), 1-24. https://doi.org/10.1186/s40854-016-0051-8

Panda, A.K., Nanda, S, & Paital, R.R. (2019). An empirical analysis of stock market interdependence and volatility spillover in the stock markets of Africa and Middle East Region. African Journal of Economic and Management Studies, 10(3), 314-335, https://doi.org/ 10.1108/AJEMS-10-2018-0293

Panda, A.K., & Nanda, S. (2017). Market linkages and conditional correlation between the stock markets of South and Central America. Journal of Financial Economic Policy, 9(2), 174-197. https://doi.org/10.1108/JFEP-08-2016-0063

Panda, P., Ahmad, W., & Thiripalraju, M. (2023). Better to Give than to Receive: A Study of BRICS Countries Stock Markets. Journal of Emerging Market Finance, 22(2), 164-188. https://doi.org/10.1177/09726527231154100

Panda, P., Vasudevan, S. & Panda B., (2020). Dynamic Connectedness among BRICS and Major Countries Stock Markets. Journal of Public Affairs, 21(3). https://doi.org/10.1002/pa.2265

Peng, S., Han, W., & Jia, G. (2022). Pearson correlation and transfer entropy in the Chinese stock market with time delay. Data Science and Management, 5(3), 117-123. https://doi.org/10.1016/j.dsm.2022.08.001

Pruchnicka-Grabias, I. (2022). Interdependence between WTI Crude Oil Prices and the US Equity Market. International Journal of Energy Economics and Policy, 12(2), 226-232. https://doi.org/10.32479/ijeep.12675.

Qing, H., Junyi, L., Sizhu, W., & Jishuang Yu. (2020). The impact of COVID-19 on stock markets. Economic and Political Studies, 8(3), 275-288. https://doi.org/10.1080/20954816.2020.1757570.

Sakthivel, P., & Kamaiah, B. (2012). Interlinkages among Asian, European and U.S. stock markets: a multivariate cointegration analysis. Journal of Economics and Behavioral Studies, 4(3), 129-141. https://doi.org/10.22610/jebs.v4i3.310

Thitaweera, N., & Sinthupinyo, S. (2021). Correlation Network Analysis in the Stock Exchange of Thailand (SET). ICMLT '21: Proceedings of the 2021 6th International Conference on Machine Learning Technologies, 170–176. https://doi.org/10.1145/3468891.3468917

Tudor, C. (2011). Changes in Stock Markets Interdependencies as a Result of the Global Financial Crisis: Empirical Investigation on the CEE Region. Panoeconomicus, 4, 525-543. https://doi.org/10.2298/PAN1104525T

Walid, M., Shawkat, H., & Sang, H. K. (2017). Dynamic linkages between developed and BRICS stock markets: Portfolio risk analysis. Finance Research Letters, 21(C), 26-33. https://doi.org/10.1016/j.frl.2016.11.016

Wang, G. J., Xie, C., Han, F., & Sun, B. (2012). Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree. Physica A: Statistical Mechanics and its Applications, 391(16), 4136-4146. https://doi.org/10.1016/j.physa.2012.03.036

Wing-Keung, W., Penm, J., Deane, R.T., & Lim, K.Y.C. (2004). The relationship between stock markets of major developed countries and Asian emerging markets. Advances in Decision Sciences, 8. https://doi.org/10.1155/S1173912604000136

Yousaf, I., Mensi, W., Vo, X.V., & Kang, S. (2023). Spillovers and connectedness between Chinese and ASEAN stock markets during bearish and bullish market statuses. International Journal of Emerging Markets online, ahead of print.

Youssef, M., Mokni, K., & Ajmi, A.N. (2021). Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: does economic policy uncertainty matter? Financial Innovation, 7(13), 1-27. https://doi.org/10.1186/s40854-021-00227-3

Żebrowska-Suchodolska, D., & Piekunko-Mantiuk, I. (2022). Similarity and Granger Causality in Polish and Spanish Stock Market Sectors During the COVID–19 Pandemic. Comparative Economic Research. Central and Eastern Europe, 25(3), 91-109. https://doi.org/10.18778/1508-2008.25.23

Torun International Studies

Pobrania

  • PDF (English)

Opublikowane

2024-09-30

Jak cytować

Izabela, I., & Żebrowska-Suchodolska, D. (2024). INTER-CONNECTEDNESS BETWEEN DEVELOPED AND VISEGRAD STOCK MARKETS DURING COVID-19 PANDEMIC AND RUSSIA-UKRAINE WAR . Torun International Studies, 1(19), 65–90. https://doi.org/10.12775/TIS.2024.005
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 1 Nr 19 (2024)

Dział

Artykuły

Licencja

Prawa autorskie (c) 2024 Izabela Pruchnicka-Grabias, Dorota Żebrowska-Suchodolska

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 161
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

stock markets, Visegrad, Covid-19 pandemic, Russia-Ukraine war, Russia
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa