Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Symmetry-breaking bifurcations for free boundary problems modeling tumor growth
  • Home
  • /
  • Symmetry-breaking bifurcations for free boundary problems modeling tumor growth
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Symmetry-breaking bifurcations for free boundary problems modeling tumor growth

Authors

  • Hongjing Pan https://orcid.org/0000-0002-8716-1469
  • Ruixiang Xing https://orcid.org/0000-0003-3354-1156

DOI:

https://doi.org/10.12775/TMNA.2021.064

Keywords

Local bifurcation, non-axisymmetric solution, tumor growth, Stokes equation, spherical harmonics

Abstract

We study a classic free boundary problem modeling solid tumor growth. The problem contains a parameter $\mu$. It is well known that the problem admit a unique radially symmetric solution with free boundary $r=R_S$ and a sequence of symmetry-breaking branches of axisymmetric solutions bifurcating from the spherical state $r=R_S$ at an increasing sequence of $\mu= \mu_\ell(R_S)$ ($\ell\geq 2$ even) with free boundary $r= R_S + \varepsilon Y_{\ell,0}(\theta) + O(\varepsilon^2)$, where $Y_{\ell,0}$ is the spherical harmonic of mode $(\ell,0)$. In this paper, we use group-theoretic ideas to obtain a plethora of new branches of non-axisymmetric solutions bifurcating at $\mu= \mu_\ell(R_S)$ $(\ell\geq 2)$. New solutions can model more complex shapes of tumor tissues than the known axisymmetric solutions. The approach is also applicable to many other free boundary problems arising in tumor growth, including a model involving fluid-like tissue.

References

H.M. Byrne and M.A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci. 130 (1995), 151–181.

P. Chossat and R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

P. Chossat, R. Lauterbach and I. Melbourne, Steady-state bifurcation with O(3)symmetry, Arch. Rational Mech. Anal. 113 (1990), 313–376.

G. Cicogna, Symmetry breakdown from bifurcation, Lett. Nuovo Cimento 31 (1981), no. 2, 600–602.

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., 8 (1971), 321–340.

S. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal. 39 (2007), 210–235.

J. Escher and A.-V. Matioc, Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math. (Basel) 97 (2011), 79–90.

B. Fiedler, J. Hell and B. Smith, Anisotropic Einstein data with isotropic non negative prescribed scalar curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 401–428.

M.A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal. 35 (2003), 187–206.

S.J. Franks, H.M. Byrne, J.R. King, J.C.E. Underwood and C.E. Lewis, Modelling the early growth of ductal carcinoma in situ of the breast, J. Math. Biol. 47 (2003), 424–452.

S.J. Franks, H.M. Byrne, H.S. Mudhar, J.C. Underwood and C.E. Lewis, Mathematical modelling of comedo ductal carcinoma in situ of the breast, Math. Med. Biol. 20 (2003), p. 277.

S.J. Franks, H.M. Byrne, J.C.E. Underwood and C.E. Lewis, Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast, J. Theoret. Biol. 232 (2005), 523–543.

A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces Free Bound. 8 (2006), 247–261.

A. Friedman, Free boundary problems associated with multiscale tumor models, Math. Model. Nat. Phenom. 4 (2009), 134–155.

A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Ration. Mech. Anal. 180 (2006), 293–330.

A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal. 39 (2007), 174–194.

A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl. 327 (2007), 643–664.

A. Friedman and B. Hu, Stability and instability of Liapunov–Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc. 360 (2008), 5291–5342.

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol. 38 (1999), 262–284.

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth, Trans. Amer. Math. Soc. 353 (2001), 1587–1634.

M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. II, Springer–Verlag, New York, 1988.

W. Hao, J.D. Hauenstein, B. Hu, Y. Liu, A.J. Sommese and Y.-T. Zhang, Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core, Nonlinear Anal. Real World Appl. 13 (2012), 694–709.

T.J. Healey and S. Dharmavaram, Symmetry-breaking global bifurcation in a surface continuum phase-field model for lipid bilayer vesicles, SIAM J. Math. Anal. 49 (2017), 1027–1059.

Y. Huang, Z. Zhang and B. Hu, Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl. 35 (2017), 483–502.

E. Ihrig and M. Golubitsky, Pattern selection with O(3) symmetry, Phys. D, 13 (1984), 1–33.

H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to Partial Differential Equations, Springer, New York, second edition, 2012.

F. Li and B. Liu, Bifurcation for a free boundary problem modeling the growth of tumors with a drug induced nonlinear proliferation rate, J. Differential Equations 263 (2017), 7627–7646.

J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise and V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity 23 (2010), R1–R91.

H. Pan and R. Xing, Bifurcation for a free boundary problem modeling tumor growth with ECM and MDE interactions, Nonlinear Anal. Real World Appl. 43 (2018), 362–377.

D.H. Sattinger, Bifurcation from rotationally invariant states, J. Math. Phys. 19 (1978), 1720–1732.

D.H. Sattinger, Group-Theoretic Methods in Bifurcation Theory, Lect. Notes Math., vol. 762, Springer, Berlin, 1979.

R.M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model, Science 240 (1988), 177–184.

J.E. Tanner, A. Forté and C. Panchal, Nucleosomes bind fibroblast growth factor-2 for increased angiogenesis in vitro and in vivo, Molecular Cancer Research 2 (2004), 281–288.

A. Vanderbauwhede, Local Bifurcation and Symmetry, Pitman, Boston, MA, 1982.

Z. Wang, Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl. 19 (2014), 45–53.

Z. Wang, J. Xu and J. Li, Bifurcation analysis for a free boundary problem modeling growth of solid tumor with inhibitors, Commun. Math. Res. 33 (2017), 85–96.

Z. Wang, S. Xu and H. Song, Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 2593–2605.

D. Westreich, Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc. 41 (1973), 609–614.

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs–Thomson relation, J. Differential Equations 260 (2016), 5875–5893.

J. Wu, Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Contin. Dyn. Syst. 39 (2019), 3399–3411.

J. Wu and S. Cui, Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci. 38 (2015), 1813–1823.

J. Wu and F. Zhou, Bifurcation analysis of a free boundary problem modelling tumour growth under the action of inhibitors, Nonlinearity 25 (2012), 2971–2991.

H. Zhang, C. Qu, and B. Hu, Bifurcation for a free boundary problem modeling a protocell, Nonlinear Anal., 70 (2009), 2779–2795.

J. Zheng and R. Xing, Bifurcation for a free-boundary tumor model with extracellular matrix and matrix degrading enzymes, J. Differential Equations 268 (2020), 3152–3170.

F. Zhou and S. Cui, Bifurcation for a free boundary problem modeling the growth of multi-layer tumors, Nonlinear Anal. 68 (2008), 2128–2145.

F. Zhou, J. Escher and S. Cui, Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl. 337 (2008), 443–457.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
PAN, Hongjing and XING, Ruixiang. Symmetry-breaking bifurcations for free boundary problems modeling tumor growth. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 387 - 412. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2021.064.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Hongjing Pan, Ruixiang Xing

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop