Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Compactly generated shape index theory and its application to a retarded nonautonomous parabolic equation
  • Home
  • /
  • Compactly generated shape index theory and its application to a retarded nonautonomous parabolic equation
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Compactly generated shape index theory and its application to a retarded nonautonomous parabolic equation

Authors

  • Jintao Wang https://orcid.org/0000-0002-3203-1413
  • Desheng Li
  • Jinqiao Duan https://orcid.org/0000-0002-2077-990X

DOI:

https://doi.org/10.12775/TMNA.2021.031

Keywords

Local semiflows, compactly generated shape, shape index, Morse equations, retarded nonautonomous equations

Abstract

We establish the compactly generated shape (H-shape) index theory for local semiflows on complete metric spaces via more general shape index pairs, which allows the phase space to be not separable. The main advantages are that the quotient space $N/E$ is not necessarily metrizable for the shape index pair $(N,E)$ and $N\setminus E$ need not to be a neighbourhood of the compact invariant set. Moreover, we define H-shape cohomology groups and the H-shape cohomology index that is used to develop the Morse equations. Particularly, we apply H-shape index theory to an abstract retarded nonautonomous parabolic equation to illustrate these advantages for the new shape index theory, in which we obtain a special existence property of bounded full solutions.

References

J. P. Aubin and A. Cellina, Differential Inclusions, Springer–Verlag, New York, 1984.

K. Borsuk, Theory of Shape, Monografie Matematyczne, t. 59, PWN – Polish Scientific, Warsaw, 1975.

A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors of Infinite Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013.

C. Conley, Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 1978.

Z. Dzedzej and W. Kryszewski, Conley type index applied to Hamiltonian inclusions, J. Math. Anal. Appl. 347 (2008), 96–112.

S. Eilenberg and N. Steenrod, Foundation of Algebraic Topology, Princeton University Press, Princeton, N.J., 1952.

A. Giraldo, M.A. Morón, F.R. Ruiz del Portal and J.M.R. Sanjurjo, Shape of global attractors in topological spaces, Nonlinear Anal. 60 (2005), 837–847.

A. Giraldo, R. Jiménez, M.A. Morón, F.R. Ruiz del Portal and J.M.R. Sanjurjo, Pointed shape and global attractors for metrisable spaces, Topology Appl. 158 (2011), 167–176.

A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math., vol. 840, Springer–Verlag, Berlin, New York, 1981.

X. W. Ju and D. S. Li, Global synchronising behavior of evolution equations with exponentially growing nonautonomous forcing, Commun. Pure Appl. Anal. 17 (2018), 1921–1944.

X. W. Ju, A. L. Qi and J. T. Wang, Strong Morse–Lyapunov functions for Morse decompositions of attractors of random dynamical systems, Stoch. Dyn. 18 (2018), 1850012.

L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors, Commun. Pure Appl. Math. LIII (2000), 0218–0242.

D.S. Li, Morse theory of attractors via Lyapunov functions, arXiv preprint, arXiv:1003.1576, (2009).

D.S. Li, G.L. Shi and X.F. Song, A linking theory for dynamical systems with applications to PDEs, arXiv preprint, arXiv:1312.1868v3, (2015).

D.S. Li, J.T. Wang and Y.B. Xiong, Attractors of local semiflows on topological spaces, J. Korean Math. Soc. 54 (2017), 773–791.

D.S. Li, J.Y. Wei and J.T. Wang, On the dynamics of abstract retarded evolution equations, Abstr. Appl. Anal. 2013 (2013), 359310.

S. Mardešić and J. Segal, Shape Theory, The Inverse System Approach, North-Holland Mathematical Library, vol. 26, North-Holland, Amsterdam, New York, 1982.

A. Marzocchi and S. Zandonella Necca, Attractors for dynamical systems in topological spaces, Discrete Contin. Dyn. Syst. 8 (2002), 585–597.

M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994), 15–37.

J.W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems 8 (1988), 375–393.

L. Rubin and J. Sanders, Compactly generated shape, General Topology Appl. 4 (1974), 73–83.

K.P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer–Verlag, Berlin, Heidelberg, 1980.

J.J. Sánchez-Gabites, An approach to the Conly shape index without index pairs, Rev. Mat. Complut. 24 (2011), 95–114.

T.J. Sanders, Shape groups for Hausdorff spaces, Glas. Mat. Ser. III (1973), 297–304.

T.J. Sanders, Shape groups and products, Pacific J. Math. 48 (1973), 485–496.

J.M.R. Sanjurjo, Morse equation and unstable manifolds of isolated invariant sets, Nonlinearity 16 (2003), 1435–1448.

J.M.R. Sanjurjo, Shape and Conley Index of Attractors and Isolated Invariant Sets, Differential Equations, Chaos and Variational Problems, Birkhäuser, Basel, 2008.

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition, Springer–Verlag, New York, 1998.

J.T. Wang and D.S. Li, On relative category and Morse decompositions for infinite-dimensional dynamical systems, Topology Appl., 291 (2021), no. 1, DOI:10.1016/j.topol.2021.107624.

J.T. Wang, D.S. Li and J.Q. Duan, On the shape Conley index theory of semiflows on complete metric spaces, Discrete Contin. Dyn. Syst. 36 (2015), 1629–1647.

J.T. Wang, L. Yang and J.Q. Duan, Recurrent solutions of a nonautonomous modified Swift–Hohenberg equation, Appl. Math. Comput. 379 (2020), DOI:10.1016/j.amc.2020.125270.

J.T. Wang, C.D. Zhao and T. Caraballo, Invariant measures for the 3D globally modified Navier–Stokes equations with unbounded variable delays, Commun. Nonlinear Sci. Numer. Simul. 91 (2020), DOI: 10.1016/j.cnsns.2020.105459.

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer–Verlag, New York, Inc., 1996.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
WANG, Jintao, LI, Desheng and DUAN, Jinqiao. Compactly generated shape index theory and its application to a retarded nonautonomous parabolic equation. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 1 - 33. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2021.031.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Jintao Wang, Desheng Li, Jinqiao Duan

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop