Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Nodal solutions for a critical Kirchhoff type problem in $\mathbb{R}^N$
  • Home
  • /
  • Nodal solutions for a critical Kirchhoff type problem in $\mathbb{R}^N$
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Nodal solutions for a critical Kirchhoff type problem in $\mathbb{R}^N$

Authors

  • Xiao-Jing Zhong https://orcid.org/0000-0002-9447-1537
  • Chun-Lei Tang https://orcid.org/000-0001-6911-3597

DOI:

https://doi.org/10.12775/TMNA.2020.076

Keywords

Kirchhoff type problem, critical growth, ground state, nodal solutions

Abstract

In the present paper, we concentrate on the following critical Kirchhoff type problem \begin{equation*} -\bigg(a+b\int_{\mathbb{R}^N}|\nabla u|^{2}dx\bigg)\triangle u+u=|u|^{2^*-2}u+\mu|u|^{p-2}u,\quad \text{in } \mathbb{R}^N, \end{equation*} where $N\geq 3$, $a, b> 0$, $p\in (2,\ 2^*)$ and $\mu$ is an arbitrary positive parameter. With the help of an equivalent transformation, we first obtain at least one ground state nodal solution with precisely two nodal domains for $N=3$, all $b> 0$ and $N\geq4$, $b> 0$ small enough. Moreover, we give a convergence property of ground state nodal solutions as $b\searrow 0$. Besides, we attain infinitely many nodal solutions for $N=3$, $p\in(4, 6)$, all $b> 0$ and $N\geq4$, $p\in (2,\ 2^*)$, $b> 0$ sufficiently small, and also establish nonexistence results of nodal solutions for $N\geq 4$ and $b$ large enough.

References

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on RN , Arch. Rational Mech. Anal. 124 (1993), 261–276.

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure. Appl. Math. 36 (1983), 437–477.

D.M. Cao and X.P. Zhu, On the existence and nodal character of solutions of semilinear elliptic equations, Acta Math. Sci. (English Ed.) 8 (1988), 345–359.

D. Cassani, Z.S. Liu, C. Tarsi and J.J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal. 186 (2019), 145–161.

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289–306.

B. Chen and Z.Q. Ou, Sign-changing and nontrivial solutions for a class of Kirchhofftype problems, J. Math. Anal. Appl. 481 (2020), 123476.

Y.B. Deng, The existence and nodal character of the solutions in RN for semilinear elliptic equation involving critical Sobolev exponent, Acta Math. Sci. (English Ed.) 9 (1989), 385–402.

Y.B. Deng, S.J. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 , J. Funct. Anal. 269 (2015), 3500–3527.

Y.B. Deng and W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in R3 , Discrete Contin. Dyn. Syst. 38 (2018), 3139–3168.

G.M. Figueiredo and J.R. Santos Junior, Existence of a least energy nodal solution for a Schrödinger–Kirchhoff equation with potential vanishing at infinity, J. Math. Phys. 56 (2015), no. 5, 051506, 18 pp.

L. Gao, C.F. Chen and C.X. Zhu, Existence of sign-changing solutions for Kirchhoff equations with critical or supercritical nonlinearity, Appl. Math. Lett. 107 (2020), Article 106424.

W.T. Huang and L. Wang, Infinitely many sign-changing solutions for Kirchhoff type equations, Complex Var. Elliptic Equ. 65 (2020), 920–935.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

S.S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl. 432 (2015), 965–982.

Q. Li, X.S. Du and Z.Q. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in R3 , J. Math. Anal. Appl. 477 (2019), 174–186.

C.Y. Lei, G.S. Liu and L.T. Guo, Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Anal. Real World Appl. 31 (2016), 343–355.

A.M. Mao and Z.T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275–1287.

D.D. Qin, F.F. Liao, Y.B. He and X.H. Tang, Infinitely many sign-changing solutions for Kirchhoff-type equations in R3 , Bull. Malays. Math. Sci. Soc. 42 (2019), 1055–1070.

W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations 259 (2015), 1256–1274.

J.J. Sun, L. Li, M. Cencelj and B. Gabrovsek, Infinitely many sign-changing solutions for Kirchhoff type problems R3 , Nonlinear Anal. 186 (2019), 33–54.

X.H. Tang and B.T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations 261 (2016), 2384–2402.

G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), 25–42.

D.B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys. 61 (2020), no. 1, 011501, 19 pp.

L. Wang, B.L. Zhang and K. Cheng, Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in R3 , J. Math. Anal. Appl. 466 (2018), 1545–1569.

M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996.

K. Wu and F. Zhou, Nodal solutions for a Kirchhoff type problem in RN , Appl. Math. Lett. 88 (2019), 58–63.

L.P. Xu and H.B. Chen, Sign-changing solutions to Schrödinger–Kirchhoff-type equations with critical exponent, Adv. Difference Equ. (2016), no. 121, 14 pp.

Z.T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 (2006), 456–463.

J.F. Zhao and X.Q. Liu, Nodal solutions for Kirchhoff equation in R3 with critical growth, Appl. Math. Lett. 102 (2020), 106101.

X.J. Zhong and C.L. Tang, The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem, Commun. Pure Appl. Anal. 16 (2017), 611–627.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
ZHONG, Xiao-Jing and TANG, Chun-Lei. Nodal solutions for a critical Kirchhoff type problem in $\mathbb{R}^N$. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 549 - 568. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2020.076.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Xiao-Jing Zhong, Chun-Lei Tang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop