Topological Methods in Nonlinear Analysis Volume 58, No. 2, 2021, 549–568 DOI: 10.12775/TMNA.2020.076

O2021 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

XIAO-JING ZHONG — CHUN-LEI TANG

ABSTRACT. In the present paper, we concentrate on the following critical Kirchhoff type problem

$$-\bigg(a+b\int_{\mathbb{R}^N}|\nabla u|^2\,dx\bigg)\triangle u+u=|u|^{2^*-2}u+\mu|u|^{p-2}u,\quad\text{in }\mathbb{R}^N,$$

where $N \geq 3$, a, b > 0, $p \in (2, 2^*)$ and μ is an arbitrary positive parameter. With the help of an equivalent transformation, we first obtain at least one ground state nodal solution with precisely two nodal domains for N = 3, all b > 0 and $N \geq 4$, b > 0 small enough. Moreover, we give a convergence property of ground state nodal solutions as $b \searrow 0$. Besides, we attain infinitely many nodal solutions for N = 3, $p \in (4, 6)$, all b > 0 and $N \geq 4$, $p \in (2, 2^*)$, b > 0 sufficiently small, and also establish nonexistence results of nodal solutions for $N \geq 4$ and b large enough.

1. Introduction

In this paper, we investigate the existence and asymptotic behavior of ground state nodal solutions, the multiplicity and nonexistence of nodal solutions for the following Kirchhoff type problem

(1.1)
$$-\left(a+b\int_{\mathbb{R}^N} |\nabla u|^2 \, dx\right) \Delta u + u = |u|^{2^*-2}u + \mu |u|^{p-2}u, \quad \text{in } \mathbb{R}^N,$$

2020 Mathematics Subject Classification. Primary: 35B33, 35J60; Secondary: 35D30.

 $Key\ words\ and\ phrases.$ Kirchhoff type problem; critical growth; ground state; nodal solutions.

The paper is supported by National Natural Science Foundation of China (No. 11801465, 11971393) and Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0331).