Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • Język Polski
    • English
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • Język Polski
  • English

Medical and Biological Sciences

The Effect of Mild Hyperthermia on Morphology, Ultrastructure and F-Actin Organization in HL-60 Cell Line
  • Home
  • /
  • The Effect of Mild Hyperthermia on Morphology, Ultrastructure and F-Actin Organization in HL-60 Cell Line
  1. Home /
  2. Archives /
  3. Vol. 27 No. 2 (2013) /
  4. ORIGINAL ARTICLES

The Effect of Mild Hyperthermia on Morphology, Ultrastructure and F-Actin Organization in HL-60 Cell Line

Authors

  • Maciej Gagat Department of Histology and Embryology, Nicolaus Copernicus University in Toruń
  • Koryna Królikowska Department of Histology and Embryology, Nicolaus Copernicus University in Toruń
  • Anna Klimaszewska-Wiśniewska Department of Histology and Embryology, Nicolaus Copernicus University in Toruń
  • Magdalena Izdebska Department of Histology and Embryology, Nicolaus Copernicus University in Toruń
  • Alina Grzanka Department of Histology and Embryology, Nicolaus Copernicus University in Toruń

DOI:

https://doi.org/10.12775/mbs-2013-0012

Keywords

hyperthermia, actin filaments, HL-60 cell line

Abstract

Introduction. Hyperthermia is a well-established physical stimulus, which is applied as an adjunctive therapy with various cancer treatments, such as radiotherapy and chemotherapy. However, the precise mechanism of heat action at the cellular level remains to be elucidated, and appears to be multi-dimensional. The purpose of the current study was to determine the effect of mild hyperthermia on the actin cytoskeleton in the HL-60 cell line. In addition, the morphological and ultrastructural approaches were used to determine the type of hyperthermia-induced cell death.

Material and methods. All studies were performed using human promyelocytic leukemia cell line (HL-60). Actin filaments were visualized with phalloidin conjugated to Alexa Fluor® 488 using fluorescence microscopy. Morphological and ultrastructural changes in the HL-60 cells were analysed by light and electron microscopy, respectively.

Results. Exposure of HL-60 cells to mild hyperthermia resulted in the reorganization of the actin cytoskeleton and the appearance of characteristic apoptotic features, including cell shrinkage, chromatin condensation and margination. In addition, swollen mitochondria were observed. The morphological and ultrastructural changes increased in severity with an increase in recovery time. Similarly, actin filament remodeling was observed immediately after the heat shock and was more evident 3 and 6 hrs after the treatment. These effects were mainly reflected by a higher definition of the dense cortical F-actin ring as well as the appearance of brightly fluorescent F-actin dots and networks scattered throughout the cytoplasm.

Conclusions. Presented data suggest that actin filament reorganization is involved in the process of apoptosis initiated by mild hyperthermia. Furthermore, the results of our studies showed that the severity of hyperthermia-induced morphological and ultrastructural changes as well as alterations in actin organization depend not only on the temperature treatment but also on the duration of post heat shock recovery

References

Habash R.W.Y., Bansal R., Krewski D. et al.: Thermal Therapy, Part 2: Hyperthermia Techniques. Crit Rev Biomed Eng, 2006; 34: 491-542. http://dx.doi.org/10.1615/CritRevBiomedEng.v34.i6.30

Chicheł A., Skowronek J., Kubaszewska M. et al.: Hyperthermia - description of a method and a review of clinical applications. Rep Pract Oncol Radiother, 2007; 12: 267-275. http://dx.doi.org/10.1016/S1507-1367(10)60065-X

Zee J.: Heating the patient: a promising approach? Ann Oncol, 2002; 13: 1173-1184.

Fiorentini G., Szasz A: Hyperthermia today: Electric energy, a new opportunity in cancer treatment. J Cancer Res Ther, 2006; 2: 41-46. http://dx.doi.org/10.4103/0973-1482.25848

Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag P.M: Hyperthermia in combined treatment of cancer. THE LANCEL Oncol., 2002; 3: 487-497.

Hildebrandt B., Wust P.: The biologic rationale of hyperthermia. Cancer Treat Res. 2007; 134: 171-84.

Kong G., Anyarambhatla G., Petros W.B. et al.: Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res, 2000; 60: 6950-6957.

Milani V., Noessner E., Ghose S. et al.: Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperther, 2002; 18: 563-575. http://dx.doi.org/10.1080/02656730210166140

Song Ch.W., Lyons J.C., Griffin R.J. et al.: Increase in Thermosensitivity of tumor cells by lowering intracellular pH. Cancer Res, 1993; 53: 1599-1601.

Sakaguchi Y., Maehara Y., Baba H. et al.: Flavone acetic acid increases the antitumor effect of hyperthermia in mice. Cancer Res, 1992; 52: 3306-3309.

Hildebrandt B., Wust P., Ahlers O. et al.: The cellular and molecular basis of hyperthermia. Crit Rev Oncol/Hematol, 2002; 43: 33-56. http://dx.doi.org/10.1016/S1040-8428(01)00179-2

Coss R.A., Linnemans W.A.: The effects of hyperthermia on the cytoskeleton. Int J Hyprther, 1996; 12: 173-196. http://dx.doi.org/10.3109/02656739609022507

Reisler E., Egelman E.H.: Actin structure and function: What we still do not understand. J Biol Chem, 2007; 282: 36133-36137. http://dx.doi.org/10.1074/jbc.R700030200

Desouza M., Gunning P.W., Stehn J.R.: The actin cytoskeleton as a sensor and mediator of apoptosis. BioArchitecture, 2012; 2: 75-87. http://dx.doi.org/10.4161/bioa.20975

Streffer C. : Metabolic changes during and after hyperthermia. Int J Hyperthermia, 1985; 1: 305-319. http://dx.doi.org/10.3109/02656738509029295

Grzanka D., Stepien A., Grzanka A. et al.: Hyperthermiainduced reorganization of microtubulrs and microfilaments and cel killing in CHO AA8 cell line. Neoplasma, 2008; 55: 409-415.

Gagat M., Grzanka A.A., Grzanka A.: Evaluation of the effect of mile hyperthermia on morphology in CHO AA8 cell line. Med Biol Scie, 2010; 24: 25-32.

Pawlik A., Nowak J.M., Grzanka D. et al.: Hyperthermia induces cytoskeletal alterations and mitotic catastrophe in p53-deficient H1299 lung cancer cells. Acta Histochem, 2012.

Luchetti F., Mannello F., Canonico B. et al.: Integrin and cytoskeleton behaviour in human neuroblastoma cells during hyperthermia-related apoptosis. Apoptosis, 2004; 9: 635-648. http://dx.doi.org/10.1023/B:APPT.0000038043.03799.6f

Shui C., Scutt A.: Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cell in vitro. J Bone Miner Res, 2001; 16: 731-741. http://dx.doi.org/10.1359/jbmr.2001.16.4.731

Luchetti F., Burattini S., Ferri P., et al.: Actin involvement in apoptotic chromatin changes of hemopoietic cells undergoing hyperthermia. Apoptosis, 2002; 7: 143-152. http://dx.doi.org/10.1023/A:1014362415047

Cole A., Armour E.P.: Ultrastructural study of mitochondrial damage in CHO cells exposed to hyperthermia. Radiat Res, 1988; 115: 421-435. http://dx.doi.org/10.2307/3577292

Wheatley D.N., Kerr C., Gregory D.W.: Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electronmicroscopical findings. Int J Hyperthermia, 1989; 5: 145-162. http://dx.doi.org/10.3109/02656738909140444

Nakahata K., Miyakoda M., Suzuki K., Kodama S., Watanabe M.: Heat shock induces centrosomal dysfunction, and causes non-apoptotic mitotic catastrophe in human tumour cells. Int J Hyperthermia, 2002; 18: 332-43. http://dx.doi.org/10.1080/02656730210129736

Grzanka A., Grzanka D., Orlikowska M.: Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol, 2003; 66: 1611-1617.

Grzanka A., Grzanka D., Orlikowska M.: Fluorescence and ultrastructural localization of actin distribution patterns in the nucleus of HL-60 and K-562 cell lines treated with cytostatic drugs. Oncol Rep, 2004; 11: 765-70.

Izdebska M., Grzanka D., Gackowska L., Żuryń A., Grzanka A.: The influence of Trisenox on actin organization in HL-60 cells. Cent Eur J Biol, 2009; 4: 351-361. http://dx.doi.org/10.2478/s11535-009-0021-5

Medical and Biological Sciences

Downloads

  • PDF

Published

2014-03-31

How to Cite

1.
GAGAT, Maciej, KRÓLIKOWSKA, Koryna, KLIMASZEWSKA-WIŚNIEWSKA, Anna, IZDEBSKA, Magdalena and GRZANKA, Alina. The Effect of Mild Hyperthermia on Morphology, Ultrastructure and F-Actin Organization in HL-60 Cell Line. Medical and Biological Sciences. Online. 31 March 2014. Vol. 27, no. 2, pp. 19-26. [Accessed 10 December 2025]. DOI 10.12775/mbs-2013-0012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 27 No. 2 (2013)

Section

ORIGINAL ARTICLES

Stats

Number of views and downloads: 645
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • Język Polski
  • English

Tags

Search using one of provided tags:

hyperthermia, actin filaments, HL-60 cell line
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop