Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Regions-based two dimensional continua: The Euclidean case
  • Strona domowa
  • /
  • Regions-based two dimensional continua: The Euclidean case
  1. Strona domowa /
  2. Archiwum /
  3. Tom 24 Nr 4 (2015): December /
  4. Artykuły

Regions-based two dimensional continua: The Euclidean case

Autor

  • Geoffrey Hellman Nicolaus Copernicus University, Department of Logic
  • Stewart Shapiro Ohio State University

DOI:

https://doi.org/10.12775/LLP.2015.011

Słowa kluczowe

mereology, point-free geometry, Euclidean geometry, Tarski, gunk, Archimedean property, points

Abstrakt

We extend the work presented in [7, 8] to a regions-based, two-dimensional, Euclidean theory. The goal is to recover the classical continuum on a point-free basis. We first derive the Archimedean property for a class of readily postulated orientations of certain special regions, “generalized quadrilaterals” (intended as parallelograms), by which we cover the entire space. Then we generalize this to arbitrary orientations, and then establishing an isomorphism between the space and the usual point-based R × R. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause” (to the effect that “these are the only ways of generating regions”), and we have no axiom of induction other than ordinary numerical (mathematical) induction. Finally, having explicitly defined ‘point’ and ‘line’, we will derive the characteristic Parallel’s Postulate (Playfair axiom) from regions-based axioms, and point the way toward deriving key Euclidean metrical properties.

Biogramy autorów

Geoffrey Hellman - Nicolaus Copernicus University, Department of Logic

Department of Philosophy

Stewart Shapiro - Ohio State University

Department of Philosophy

Bibliografia

Aristotle, The basic works of Aristotle, edited by R. McKeon, Random House, 1941.

Bennett, B., “A categorical axiomatization of region-based geometry”, Fundamenta Informaticae, 46 (2001): 145–158.

Biacino, L., and G. Gerla, “Connection structures: Grzegorczyk’s and Whitehead’s definitions of point”, Notre Dame Journal of Formal Logic, 37 (1996): 431–439. DOI: 10.1305/ndjfl/1039886519

de Laguna, T., “Point, line, and surface, as sets of solids”, Journal of Philosophy, 19 (1922): 449–461.

Grzegorczyk, A. “Axiomatizability of geometry without points”, Synthese, 12 (1960): 228–235. DOI: 10.1007/BF00485101

Gruszczyński, R., and A. Pietruszczak, “Full development of Tarski’s geometry of solids”, The Bulletin of Symbolic Logic, 14 (2008): 481–540. DOI: 10.2178/bsl/1231081462

Hellman, G., and S. Shapiro, “Towards a point-free account of the continuous”, Iyyun: The Jerusalem Philosophical Quarterly, 61 (2012): 263–287.

Hellman, G., and S. Shapiro, “The classical continuum without points”, Review of Symbolic Logic, 6 (2013): 488–512. DOI: 10.1017/S1755020313000075

Nagel, E., “The meaning of reduction in the natural sciences”, pp. 288–312 in Philosophy of Science, A. Danto and S. Morgenbesser (eds.) Cleveland: Meridian Books, 1960.

Nagel, E., The Structure of science, New York: Harcourt, Brace, and World, 1961.

Pieri, M. “La geometria elementare instituita sulle nozione di ‘punto’ e ‘sfera’”, Memorie di Matematica e di Fisica della Società Italiana delle Scienze, Serie Terza, 15 (1908): 345–450.

Tarski, A. “Foundations of the geometry of solids”, pp. 24–29 in Logic, Semantics, and Metamathematics: Papers from 1923 to 1938, Oxford, 1956.

Whitehead, A.N., Process and Reality, New York, The MacMillan Company, 1929.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

15.05.2015

Jak cytować

1.
HELLMAN, Geoffrey & SHAPIRO, Stewart. Regions-based two dimensional continua: The Euclidean case. Logic and Logical Philosophy [online]. 15 maj 2015, T. 24, nr 4, s. 499–534. [udostępniono 7.7.2025]. DOI 10.12775/LLP.2015.011.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 24 Nr 4 (2015): December

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 541
Liczba cytowań: 5

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

mereology, point-free geometry, Euclidean geometry, Tarski, gunk, Archimedean property, points
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa