Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Regions-based two dimensional continua: The Euclidean case
  • Home
  • /
  • Regions-based two dimensional continua: The Euclidean case
  1. Home /
  2. Archives /
  3. Vol. 24 No. 4 (2015): December /
  4. Articles

Regions-based two dimensional continua: The Euclidean case

Authors

  • Geoffrey Hellman University of Minnesota
  • Stewart Shapiro Ohio State University

DOI:

https://doi.org/10.12775/LLP.2015.011

Keywords

mereology, point-free geometry, Euclidean geometry, Tarski, gunk, Archimedean property, points

Abstract

We extend the work presented in [7, 8] to a regions-based, two-dimensional, Euclidean theory. The goal is to recover the classical continuum on a point-free basis. We first derive the Archimedean property for a class of readily postulated orientations of certain special regions, “generalized quadrilaterals” (intended as parallelograms), by which we cover the entire space. Then we generalize this to arbitrary orientations, and then establishing an isomorphism between the space and the usual point-based R × R. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause” (to the effect that “these are the only ways of generating regions”), and we have no axiom of induction other than ordinary numerical (mathematical) induction. Finally, having explicitly defined ‘point’ and ‘line’, we will derive the characteristic Parallel’s Postulate (Playfair axiom) from regions-based axioms, and point the way toward deriving key Euclidean metrical properties.

Author Biographies

Geoffrey Hellman, University of Minnesota

Department of Philosophy

Stewart Shapiro, Ohio State University

Department of Philosophy

References

Aristotle, The basic works of Aristotle, edited by R. McKeon, Random House, 1941.

Bennett, B., “A categorical axiomatization of region-based geometry”, Fundamenta Informaticae, 46 (2001): 145–158.

Biacino, L., and G. Gerla, “Connection structures: Grzegorczyk’s and Whitehead’s definitions of point”, Notre Dame Journal of Formal Logic, 37 (1996): 431–439. DOI: 10.1305/ndjfl/1039886519

de Laguna, T., “Point, line, and surface, as sets of solids”, Journal of Philosophy, 19 (1922): 449–461.

Grzegorczyk, A. “Axiomatizability of geometry without points”, Synthese, 12 (1960): 228–235. DOI: 10.1007/BF00485101

Gruszczyński, R., and A. Pietruszczak, “Full development of Tarski’s geometry of solids”, The Bulletin of Symbolic Logic, 14 (2008): 481–540. DOI: 10.2178/bsl/1231081462

Hellman, G., and S. Shapiro, “Towards a point-free account of the continuous”, Iyyun: The Jerusalem Philosophical Quarterly, 61 (2012): 263–287.

Hellman, G., and S. Shapiro, “The classical continuum without points”, Review of Symbolic Logic, 6 (2013): 488–512. DOI: 10.1017/S1755020313000075

Nagel, E., “The meaning of reduction in the natural sciences”, pp. 288–312 in Philosophy of Science, A. Danto and S. Morgenbesser (eds.) Cleveland: Meridian Books, 1960.

Nagel, E., The Structure of science, New York: Harcourt, Brace, and World, 1961.

Pieri, M. “La geometria elementare instituita sulle nozione di ‘punto’ e ‘sfera’”, Memorie di Matematica e di Fisica della Società Italiana delle Scienze, Serie Terza, 15 (1908): 345–450.

Tarski, A. “Foundations of the geometry of solids”, pp. 24–29 in Logic, Semantics, and Metamathematics: Papers from 1923 to 1938, Oxford, 1956.

Whitehead, A.N., Process and Reality, New York, The MacMillan Company, 1929.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2015-05-15

How to Cite

1.
HELLMAN, Geoffrey and SHAPIRO, Stewart. Regions-based two dimensional continua: The Euclidean case. Logic and Logical Philosophy. Online. 15 May 2015. Vol. 24, no. 4, pp. 499-534. [Accessed 5 July 2025]. DOI 10.12775/LLP.2015.011.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 24 No. 4 (2015): December

Section

Articles

Stats

Number of views and downloads: 541
Number of citations: 5

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

mereology, point-free geometry, Euclidean geometry, Tarski, gunk, Archimedean property, points
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop