Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Classical arithmetic is quite unnatural
  • Strona domowa
  • /
  • Classical arithmetic is quite unnatural
  1. Strona domowa /
  2. Archiwum /
  3. Nr 11-12 (2003) /
  4. Artykuły

Classical arithmetic is quite unnatural

Autor

  • Jean Paul Van Bendegem Department of Logic, Nicolaus Copernicus University

DOI:

https://doi.org/10.12775/LLP.2003.012

Abstrakt

It is a generally accepted idea that strict finitism is a rather marginal view within the community of philosophers of mathematics. If one therefore wants to defend such a position (as the present author does), then it is useful to search for as many different arguments as possible in support of strict finitism. Sometimes, as will be the case in this paper, the argument consists of, what one might call, a “rearrangement” of known materials. The novelty lies precisely in the rearrangement, hence on the formal-axiomatic level most of the results presented here are not new. In fact, the basic results are inspired by and based on Mycielski (1981).

Bibliografia

V. Allis and Teun Koetsier, ‘On Some Paradoxes of the Infinite’, British Journal for the Philosophy of Science, vol. 42, 1991, pp. 187–194.

V. Allis and Teun Koetsier, ‘On Some Paradoxes of the Infinite II’, British Journal for the Philosophy of Science, vol. 46, 1995, pp. 235–247.

Diderik Batens, ‘A General Characterization of Adaptive Logics’, Logique et Analyse, 2002 (to appear).

Diderik Batens, ‘The Demise of Rich Finitism. A Study in the Limitations of Paraconsistency’, Unpublished paper (available from the url: http://logica.rug.ac.be/centrum/writings/index.html).

Richard L. Epstein and Walter A. Carnielli, Computability. Computable Functions, Logic, and the Foundations of Mathematics, London, Wadsworth, 2000 (2nd edition).

P. Holgate, ‘Discussion: Mathematical Notes on Ross’s Paradox’, British Journal for the Philosophy of Science, vol. 45, 1994, pp. 302–304.

Richard Kaye, Models of Peano Arithmetic, Oxford, Clarendon Press, 1991.

Christian Michaux, (ed.), Definability in Arithmetics and Computability, Louvain-la-Neuve, Academia Bruylant, 2000 (Cahiers du Centre de Logique 11).

Jan Mycielski, ‘Analysis without Actual Infinity’, Journal of Symbolic Logic, vol. 46, number 3, 1981, pp. 625–633.

José Perez Laraudogoitia, ‘Supertasks’, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2002 Edition), http://plato.stanford.edu/ archives/sum2002/entries/spacetime-supertasks/.

Edward Nelson, Predicative Arithmetic, Princeton, Princeton University Press, 1986.

Jean Paul Van Bendegem, ‘Ross’ Paradox is an Impossible Super Task’, British Journal for the Philosophy of Science, vol. 45, 1994a, pp. 743–48.

Jean Paul Van Bendegem, ‘Strict Finitism as a Viable Alternative in the Foundations of Mathematics’, Logique et Analyse, vol. 37, 145, 1994b (date of publication: 1996), pp. 23–40.

Jean Paul Van Bendegem, ‘Why the largest number imaginable is still a finite number’, Logique et Analyse, vol. 41, 161–162–163, 1998 (date of publication: 2001), pp. 107–126.

Timothy Vermeir, ‘Inconsistency Adaptive Arithmetic’, Logique et Analyse, vol. 42, 167-168, 1999 (date of publication: 2002), pp. 221–241.

Ludwig Wittgenstein, Remarks on the Foundations of Mathematics, (Edited by G.H. von Wright, R. Rhees, G.E.M. Anscombe, translated by G.E.M. Anscombe), Oxford, Basil Blackwell, 19561, 19672, 19783 (revised and reset).

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

23.11.2003

Jak cytować

1.
VAN BENDEGEM, Jean Paul. Classical arithmetic is quite unnatural. Logic and Logical Philosophy [online]. 23 listopad 2003, nr 11-12, s. 231–249. [udostępniono 3.7.2025]. DOI 10.12775/LLP.2003.012.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Nr 11-12 (2003)

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 854
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa