Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Classical arithmetic is quite unnatural
  • Home
  • /
  • Classical arithmetic is quite unnatural
  1. Home /
  2. Archives /
  3. No. 11-12 (2003) /
  4. Articles

Classical arithmetic is quite unnatural

Authors

  • Jean Paul Van Bendegem Vrije Universiteit Brussel and Universiteit Gent

DOI:

https://doi.org/10.12775/LLP.2003.012

Abstract

It is a generally accepted idea that strict finitism is a rather marginal view within the community of philosophers of mathematics. If one therefore wants to defend such a position (as the present author does), then it is useful to search for as many different arguments as possible in support of strict finitism. Sometimes, as will be the case in this paper, the argument consists of, what one might call, a “rearrangement” of known materials. The novelty lies precisely in the rearrangement, hence on the formal-axiomatic level most of the results presented here are not new. In fact, the basic results are inspired by and based on Mycielski (1981).

References

V. Allis and Teun Koetsier, ‘On Some Paradoxes of the Infinite’, British Journal for the Philosophy of Science, vol. 42, 1991, pp. 187–194.

V. Allis and Teun Koetsier, ‘On Some Paradoxes of the Infinite II’, British Journal for the Philosophy of Science, vol. 46, 1995, pp. 235–247.

Diderik Batens, ‘A General Characterization of Adaptive Logics’, Logique et Analyse, 2002 (to appear).

Diderik Batens, ‘The Demise of Rich Finitism. A Study in the Limitations of Paraconsistency’, Unpublished paper (available from the url: http://logica.rug.ac.be/centrum/writings/index.html).

Richard L. Epstein and Walter A. Carnielli, Computability. Computable Functions, Logic, and the Foundations of Mathematics, London, Wadsworth, 2000 (2nd edition).

P. Holgate, ‘Discussion: Mathematical Notes on Ross’s Paradox’, British Journal for the Philosophy of Science, vol. 45, 1994, pp. 302–304.

Richard Kaye, Models of Peano Arithmetic, Oxford, Clarendon Press, 1991.

Christian Michaux, (ed.), Definability in Arithmetics and Computability, Louvain-la-Neuve, Academia Bruylant, 2000 (Cahiers du Centre de Logique 11).

Jan Mycielski, ‘Analysis without Actual Infinity’, Journal of Symbolic Logic, vol. 46, number 3, 1981, pp. 625–633.

José Perez Laraudogoitia, ‘Supertasks’, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2002 Edition), http://plato.stanford.edu/ archives/sum2002/entries/spacetime-supertasks/.

Edward Nelson, Predicative Arithmetic, Princeton, Princeton University Press, 1986.

Jean Paul Van Bendegem, ‘Ross’ Paradox is an Impossible Super Task’, British Journal for the Philosophy of Science, vol. 45, 1994a, pp. 743–48.

Jean Paul Van Bendegem, ‘Strict Finitism as a Viable Alternative in the Foundations of Mathematics’, Logique et Analyse, vol. 37, 145, 1994b (date of publication: 1996), pp. 23–40.

Jean Paul Van Bendegem, ‘Why the largest number imaginable is still a finite number’, Logique et Analyse, vol. 41, 161–162–163, 1998 (date of publication: 2001), pp. 107–126.

Timothy Vermeir, ‘Inconsistency Adaptive Arithmetic’, Logique et Analyse, vol. 42, 167-168, 1999 (date of publication: 2002), pp. 221–241.

Ludwig Wittgenstein, Remarks on the Foundations of Mathematics, (Edited by G.H. von Wright, R. Rhees, G.E.M. Anscombe, translated by G.E.M. Anscombe), Oxford, Basil Blackwell, 19561, 19672, 19783 (revised and reset).

Logic and Logical Philosophy

Downloads

  • PDF

Published

2003-11-23

How to Cite

1.
VAN BENDEGEM, Jean Paul. Classical arithmetic is quite unnatural. Logic and Logical Philosophy. Online. 23 November 2003. No. 11-12, pp. 231-249. [Accessed 3 July 2025]. DOI 10.12775/LLP.2003.012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 11-12 (2003)

Section

Articles

Stats

Number of views and downloads: 854
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop