Wpływ chryzyny na parametry histomorfometryczne kości owariektomizowanych szczurów
DOI:
https://doi.org/10.12775/HERB.2017.003Słowa kluczowe
osteoporoza, szczury, owariektomia, chryzyna, fitoestrogeny, parametry histomorfometryczneAbstrakt
Osteoporoza jest schorzeniem wynikającym między innymi z niedoboru estrogenów u kobiet w okresie menopauzalnym. Choroba ta charakteryzuje się zmniejszoną wytrzymałością kości na uszkodzenia mechaniczne. Osłabienie układu szkieletowego wynika z zaburzeń na poziomie mikroarchitektury tkanki kostnej. Aby zapobiec rozwojowi osteoporozy pomenopauzalnej, można stosować terapię hormonalną, która jednak niesie za sobą wiele działań niepożądanych. W związku z tym poszukuje się bezpiecznej alternatywy dla hormonalnej terapii zastępczej. W tym celu wykorzystywane są związki pochodzenia roślinnego, w tym substancje o charakterze flawonoidów, nazywane fitoestrogenami. Celem pracy było zbadanie, czy związek o strukturze flawonoidu – chryzyna – może wykazywać ochronne działanie na tkankę kostną na poziomie mikroarchitektury u szczurów z eksperymentalnie wywołaną osteoporozą. Badania prowadzono na samicach szczurów szczepu Wistar podzielonych na grupy: SHAM – pozornie operowane, OVX – owariektomizowane i OVX+CHR – owariektomizowane, którym podawano doustnie chryzynę w dawce 50 mg/kg przez 4 tygodnie. Po izolacji kości zanalizowano parametry makrometryczne oraz wykonano preparaty histologiczne i oznaczono szereg parametrów histomorfometrycznych. Uzyskane wyniki wskazują, że chryzyna podawana szczurom owariektomizowanym powoduje nieznaczną poprawę badanych parametrów.
Bibliografia
Holroyd C., Cooper C., Dennison E., Epidemiology of osteoporosis, Best Practice & Research Clinical Endocrinology & Metabolism, 2008, 22(5), s. 671–685.
Klein-Nulend J., Oers R.F. van, Bacabac R.G., Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis Journal of Biomechanics, 2015, 48(5), s. 855–865.
Raisz L.G., Pathogenesis of osteoporosis: concepts, conflicts, and prospects, Journal of Clinical Investigation, 2005, 115(12), s. 3318–3325.
Khosla S., Oursler M.J., Monroe D.G., Estrogen and the skeleton, Trends in Endocrinology and Metabolism, 2012, 23(11), s. 576–581.
Gambacciani M., Levancini M., Management of postmenopausal osteoporosis and the prevention of fractures, Panminerva Medica, 2014, 56(2), s. 115–131.
Cauley J.A., Estrogen and bone health in men and women, Steroids, 2015, 99(Pt A), s. 11–15.
Beral V., Banks E., Reeves G., Evidence from randomised trials on the long-term effects of hormone replacement therapy, Lancet, 2002, 360(9337), s. 942–944.
Cederroth C.R., Nef S., Soy, phytoestrogens and metabolism: A review, Molecular and Cellular Endocrinology, 2009, 304(1–2), s. 30–42.
Kuhnle G. G. C., Vogiatzoglou A., Ward H.A., Khaw K.-T., Dietary phytoestrogens and health – a population study, Proceedings of the Nutrition Society, 2011, 70, (OCE4), article E254.
Kaczmarczyk-Sedlak I., Wojnar W., Zych M., Ozimina-Kamińska E., Taranowicz J., Agata Siwek A., A Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis, Evidence-Based Complementary and Alternative Medicine, 2013, 457052, http://dx.doi. org/10.1155/2013/457052
Kaczmarczyk-Sedlak I., Zych M, Wojnar W., Ozimina-Kamińska E., Dudek S., Chadała N., Kachel A., Biochanin a shows no effect on skeletal system in ovariectomized rats, when administered in moderate dose, Acta Poloniae Pharmaceutica, 2015, 72(3), s. 587–596.
Kuiper G.G., Lemmen J.G., Carlsson B., Corton J.C., Safe S.H., Saag P.T. van der, van der Burg B. van der, Gustafsson J.A., Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta, Endocrinology, 1998, 139(10), s. 4252–4263.
Klasik-Ciszewska S. Kaczmarczyk-Sedlak I., Wojnar W., Effect of glabridin and glycyrrhizic acid on histomorphometric parameters of bones in ovariectomized rats, Acta Poloniae Pharmaceutica, 2016, 73(2), s. 517–527, Erratum in: Acta Poloniae Pharmaceutica, 2016, 73(3), s. 808.
Harminder, Singh V., Chaudhary A.K., A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum Vent, Indian Journal of Pharmaceutical Sciences, 2011, 73(5), s.483–490.
Dhawan K., Dhawan S., Sharma A., Passiflora: a review update, Journal of Ethnopharmacology, 2004, 94(1), s. 1–23.
Amor E.C., Bioflavonoids as bioactive natural products from plants, Frontiers in Natural Product Chemistry, 2005, 1, s. 189–192.
Kaškonienė V., Maruska A., Kornysova O., Buszewski B., Quantitative and qualitative determination of phenolic compounds in honey, Cheminė Technologija, 2009, 3(52), s. 74–80.
Anandhi R., Annadurai T., Anitha T.S., Muralidharan A.R., Najmunnisha K., Nachiappan V., Thomas P.A., Geraldine P., Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats, Journal of Physiology and Biochemistry, 2013, 69(2), s.313–23.
Khoo B.Y., Siang Ling Chua S.L., Balaram P., Apoptotic effects of chrysin in human cancer cell lines, International Journal of Molecular Sciences, 2010, 11(5), s. 2188–2199.
Brown E’., Hurd N.S., McCall S., Ceremuga T.E., Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat, AANA Journal, 2007, 75(5), s. 333–337.
Pushpavalli G., Kalaiarasi P., Veeramani Ch., Pugalendi K.V., Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats, European Journal of Pharmacology, 2010, 631(1-3), s. 36–41.
Oršolić N., Goluža E., Dikić D., Lisičić D., Sašilo K., Rođak E., Jeleč Z., Lazarus M.V., Orct T., Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat, European Journal of Nutrition, 2014, 53(5), s. 1217–1227.
Kaczmarczyk-Sedlak I., Wojnar W., Zych M., Ozimina-Kamińska E., Bońka A., Effect of dietary flavonoid naringenin on bones in rats with ovariectomy induced osteoporosis, Acta Poloniae Pharmaceutica, 2016, 73(2), s. 1073–1081.
Kaczmarczyk-Sedlak I., Zych M., Rotko K., Sedlak L., Effects of thalidomide on the development of bone damage caused by prednisolone in rats, Pharmacological Reports, 2012, 64(2), s. 386–395.
Folwarczna J., Janiec W., Gawor M., Pytlik M., Kaczmarczyk-Sedlak I., Nowińska B., Effects of enoxaparin on histomorphometric parameters of bones in rats, Polish Journal of Pharmacology, 2004, 56(4), 451–457.
Tripp E.J., MacKay E.H., Silver staining of bone prior to decalcification for quantitative determination of osteoid in sections, Stain Technology, 1972, 47(3), s. 129–136.
Baylink D., Wergedal J., Stauffer M., Formation, mineralization, and resorption of bone in hypophosphatemic rats, Journal of Clinical Investigation, 1971, 50(12), s. 2519–2530.
Frost H.M., Tetracycline-based histological analysis of bone remodeling, Calcified Tissue Research, 1969, 3(3), s. 211–237.
Kalu D.N., The ovariectomized rat model of postmenopausal bone loss, Bone and Mineral, 1991, 15(3), s. 175–191.
Badurski J., Osteoporoza a złamania. Poradnik do zrozumienia, diagnostyki i leczenia, Polska Fundacja Osteoporozy, Białystok 2003.
Kaczmarczyk-Sedlak I., Folwarczna J., Trzeciak H.I., Thalidomide affects the skeletal system of ovariectomized rats, Pharmacological Reports, 2009, 61(3), s. 529–538.
Folwarczna J., Zych M., Nowińska B., Pytlik M., Bialik M., Jagusiak A., Lipecka-Karcz M., Matysiak M., Effect of diosgenin, a steroidal sapogenin, on the rat skeletal system, Acta Biochimica Polonica, 2016, 63(2), s. 287–295.
Usui T., Pharmaceutical prospects of phytoestrogens, Endocrine Journal, 2006, 53(1), s. 7–20.
Atteritano M.. Mazzaferro S., Frisina A., Cannata M.L., Bitto A., Squadrito F., Macrì I., Frisina N., Buemi M., Genistein effects on quantitative ultrasound parameters and bone mineral density in osteopenic postmenopausal women, Osteoporosis International, 2009, 20(11), s. 1947–1954.
Marini H., Minutoli L., Polito F., Bitto A., Altavilla D., Atteritano M., Gaudio A., Mazzaferro S., Frisina A., Frisina N., Lubrano C., Bonaiuto M., D’Anna R., Cannata M.L., Corrado F., Adamo E.B., Wilson S., Squadrito F., Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial, Annals of Internal Medicine, 2007, 146(12), s. 839–847.
Zeng W., Yan Y., Zhang F., Zhang C., Liang W., Chrysin promotes osteogenic differentiation via ERK/MAPK activation, Protein & Cell, 2013, 4(7), s. 539–547.
Kim T.H., Jung J.W., Ha B.G., Hong J.M., Park E.K., Kim H.J., Kim S.Y., The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss, The Journal of Nutritional Biochemistry, 2011, 22(1), s. 8–15.
Park J.A., Ha S.K., Kang T.H., Oh M.S., Cho M.H., Lee S.Y., Park J.H., Kim S.Y., Protective effect of apigenin on ovariectomy-induced bone loss in rats, Life Science, 2008, 82(25–26), s. 1217–1223.
Pobrania
Sklep wydawnictwa:
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 627
Liczba cytowań: 0