Reidemeister spectra for solvmanifolds in low dimensions

Karel Dekimpe, Sam Tertooy, Iris Van den Bussche



The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group $G$ is called the Reidemeister spectrum of $G$. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4.


Twisted conjugacy, Reidemeister number, polycyclic group, solvmanifold

Full Text:



L.S. Charlap, Bieberbach Groups and Flat Manifolds, Universitext, Springer–Verlag, New York Inc., 1986.

K. Dekimpe, A users’ guide to infra-nilmanifolds and almost-Bieberbach groups, Handbook of Group Actions, Vol. III, Adv. Lect. Math. (ALM), 40, Int. Press, Somerwille, MA, 2018, 215–262.

K. Dekimpe, B. De Rock and P. Penninckx, The R∞ property for infra-nilmanifolds, Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 353–374.

K. Dekimpe and D. Gonçalves, The R∞ property for free groups, free nilpotent groups and free solvable groups, Bull. Lond. Math. Soc. 46 (2014), no. 4, 737–746.

A. Fel’shtyn and R. Hill, Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion, Nielsen theory and Reidemeister torsion (Warsaw, 1996), vol. 49, Banach Center Publ., vol. 49 ,Polish Acad. Sci., Warsaw, 1999, 77–116.

A. Fel’shtyn and T. Nasybullov, The R∞ and S∞ properties for linear algebraic groups, J. Group Theory 19 (2016), no. 5, 901–921.

A. Fel’shtyn and E. Troitsky, Aspects of the property R∞ , J. Group Theory 18 (2015), no. 6, 1021–1034.

D. Gonçalves and P. Wong, Twisted conjugacy classes in exponential growth groups, Bull. London Math. Soc. 35 (2003), no. 2, 261–268.

D. Gonçalves and P. Wong, Twisted conjugacy classes in nilpotent groups, J. Reine Angew. Math. 633 (2009), 11–27.

D. Gonçalves and P. Wong, Nielsen numbers of selfmaps of Sol 3-manifolds, Topology Appl. 159 (2012), no. 18, 3729–3737.

D.L. Gonçalves and P.N.-S. Wong, Twisted conjugacy for virtually cyclic groups and crystallographic groups, Combinatorial and Geometric Group Theory, Trends in Mathematics, Birkhaüser, 2010, 119–147.

K.Y. Ha, J.B. Lee and P. Penninckx, Formulas for the Reidemeister, Lefschetz and Nielsen coincidence number of maps between infra-nilmanifolds, Fixed Point Theory Appl. 2012 (2012),

J. Jezierski and W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Point Theory, Topological Fixed Point Theory and its Applications, vol. 3, Springer, 2006.

B. Jiang, Nielsen Fixed Point Theory, Contemp. Math., vol. 14, Amer. Math. Soc. 1983.

T. Kiang, The Theory of Fixed Point Classes, Springer–Verlag, 1989.

J.B. Lee and K.B. Lee, Averaging formula for Nielsen numbers of maps on infrasolvmanifolds of type (R), Nagoya Math. J. 196 (2009), 117–134.

M. Newman, Integral Matrices, Pure and Applied Mathematics, vol. 45, Academic Press, New York, London, 1972.

A.L. Onishchik and E.B. Vinberg Lie Groups and Lie Algebras I, Encyclopedia of Mathematics, vol. I, Springer–Verlag, Berlin, Heidelberg, New York, 1993.

V. Roman’kov, Twisted conjugacy classes in nilpotent groups, J. Pure Appl. Algebra 215 (2011), no. 4, 664–671.

A. Szczepański, Geometry of crystallographic groups, Algebra and Discrete Mathematics, vol. 4, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

K.I. Tahara, On the finite subgroups of GL(3, Z), Nagoya Math. J. 41 (1971), 169–209.

J.A. Wolf, Spaces of constant curvature, Publish or Perish, Inc. Berkeley, 1977.


  • There are currently no refbacks.

Partnerzy platformy czasopism