Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Reidemeister spectra for solvmanifolds in low dimensions
  • Home
  • /
  • Reidemeister spectra for solvmanifolds in low dimensions
  1. Home /
  2. Archives /
  3. Vol 53, No 2 (June 2019) /
  4. Articles

Reidemeister spectra for solvmanifolds in low dimensions

Authors

  • Karel Dekimpe https://orcid.org/0000-0002-2280-8575
  • Sam Tertooy https://orcid.org/0000-0002-5750-9153
  • Iris Van den Bussche

Keywords

Twisted conjugacy, Reidemeister number, polycyclic group, solvmanifold

Abstract

The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group $G$ is called the Reidemeister spectrum of $G$. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4.

References

L.S. Charlap, Bieberbach Groups and Flat Manifolds, Universitext, Springer–Verlag, New York Inc., 1986.

K. Dekimpe, A users’ guide to infra-nilmanifolds and almost-Bieberbach groups, Handbook of Group Actions, Vol. III, Adv. Lect. Math. (ALM), 40, Int. Press, Somerwille, MA, 2018, 215–262.

K. Dekimpe, B. De Rock and P. Penninckx, The R∞ property for infra-nilmanifolds, Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 353–374.

K. Dekimpe and D. Gonçalves, The R∞ property for free groups, free nilpotent groups and free solvable groups, Bull. Lond. Math. Soc. 46 (2014), no. 4, 737–746.

A. Fel’shtyn and R. Hill, Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion, Nielsen theory and Reidemeister torsion (Warsaw, 1996), vol. 49, Banach Center Publ., vol. 49 ,Polish Acad. Sci., Warsaw, 1999, 77–116.

A. Fel’shtyn and T. Nasybullov, The R∞ and S∞ properties for linear algebraic groups, J. Group Theory 19 (2016), no. 5, 901–921.

A. Fel’shtyn and E. Troitsky, Aspects of the property R∞ , J. Group Theory 18 (2015), no. 6, 1021–1034.

D. Gonçalves and P. Wong, Twisted conjugacy classes in exponential growth groups, Bull. London Math. Soc. 35 (2003), no. 2, 261–268.

D. Gonçalves and P. Wong, Twisted conjugacy classes in nilpotent groups, J. Reine Angew. Math. 633 (2009), 11–27.

D. Gonçalves and P. Wong, Nielsen numbers of selfmaps of Sol 3-manifolds, Topology Appl. 159 (2012), no. 18, 3729–3737.

D.L. Gonçalves and P.N.-S. Wong, Twisted conjugacy for virtually cyclic groups and crystallographic groups, Combinatorial and Geometric Group Theory, Trends in Mathematics, Birkhaüser, 2010, 119–147.

K.Y. Ha, J.B. Lee and P. Penninckx, Formulas for the Reidemeister, Lefschetz and Nielsen coincidence number of maps between infra-nilmanifolds, Fixed Point Theory Appl. 2012 (2012), https://doi.org/10.1186/1687-1812-2012-39.

J. Jezierski and W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Point Theory, Topological Fixed Point Theory and its Applications, vol. 3, Springer, 2006.

B. Jiang, Nielsen Fixed Point Theory, Contemp. Math., vol. 14, Amer. Math. Soc. 1983.

T. Kiang, The Theory of Fixed Point Classes, Springer–Verlag, 1989.

J.B. Lee and K.B. Lee, Averaging formula for Nielsen numbers of maps on infrasolvmanifolds of type (R), Nagoya Math. J. 196 (2009), 117–134.

M. Newman, Integral Matrices, Pure and Applied Mathematics, vol. 45, Academic Press, New York, London, 1972.

A.L. Onishchik and E.B. Vinberg Lie Groups and Lie Algebras I, Encyclopedia of Mathematics, vol. I, Springer–Verlag, Berlin, Heidelberg, New York, 1993.

V. Roman’kov, Twisted conjugacy classes in nilpotent groups, J. Pure Appl. Algebra 215 (2011), no. 4, 664–671.

A. Szczepański, Geometry of crystallographic groups, Algebra and Discrete Mathematics, vol. 4, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

K.I. Tahara, On the finite subgroups of GL(3, Z), Nagoya Math. J. 41 (1971), 169–209.

J.A. Wolf, Spaces of constant curvature, Publish or Perish, Inc. Berkeley, 1977.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-05-23

How to Cite

1.
DEKIMPE, Karel, TERTOOY, Sam and DEN BUSSCHE, Iris Van. Reidemeister spectra for solvmanifolds in low dimensions. Topological Methods in Nonlinear Analysis. Online. 23 May 2019. Vol. 53, no. 2, pp. 575 - 601. [Accessed 7 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 53, No 2 (June 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop