Topological Methods in Nonlinear Analysis Volume 53, No. 2, 2019, 575–601 DOI: 10.12775/TMNA.2019.012

© 2019 Juliusz Schauder Centre for Nonlinear Studies

REIDEMEISTER SPECTRA FOR SOLVMANIFOLDS IN LOW DIMENSIONS

KAREL DEKIMPE — SAM TERTOOY — IRIS VAN DEN BUSSCHE

ABSTRACT. The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group G is called the Reidemeister spectrum of G. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4.

1. Introduction

Let G be a group and $\varphi \colon G \to G$ an endomorphism. Consider the following equivalence relation on G:

$$x \sim_{\varphi} y$$
 if and only if $\exists z \in G : x = zy\varphi(z)^{-1}$.

The equivalence classes under \sim_{φ} are the *Reidemeister classes of* φ or the φ -twisted conjugacy classes. We denote the set of these equivalence classes by $\mathcal{R}(\varphi)$. The number of equivalence classes is called the *Reidemeister number of* φ and is denoted by $R(\varphi)$. If $\mathcal{R}(\varphi)$ is infinite, we write $R(\varphi) = \infty$. Subsequently, the *Reidemeister spectrum of* G is defined as

$$\operatorname{Spec}_{\mathbf{R}}(G) := \{ R(\varphi) \mid \varphi \in \operatorname{Aut}(G) \}.$$

 $^{2010\} Mathematics\ Subject\ Classification.\ 20E36,\ 20F16.$

 $[\]it Key\ words\ and\ phrases.$ Twisted conjugacy; Reidemeister number; polycyclic group; solymanifold.