Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of three nontrivial solutions for a class of fourth-order elliptic equations
  • Home
  • /
  • Existence of three nontrivial solutions for a class of fourth-order elliptic equations
  1. Home /
  2. Archives /
  3. Vol 51, No 2 (June 2018) /
  4. Articles

Existence of three nontrivial solutions for a class of fourth-order elliptic equations

Authors

  • Chun Li
  • Ravi P. Agarwal
  • Zeng-Qi Ou

Keywords

Fourth-order elliptic equations, linking theorem, ($\nabla$)-theorem, critical points

Abstract

The existence of three nontrivial solutions is established for a class of fourth-order elliptic equations. Our technical approach is based on Linking Theorem and ($\nabla$)-Theorem.

References

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical pointd theory and applications, J. Funct. Anal. 14 (1973), 349–381.

A.C. Lazer and P.J. McKenna, Large amplitude periodic oscillations in suspension bridges: some newconnections withnonlinear analysis, SIAM Review 32 (1990), 537–578.

C. Li, Z.-Q. Ou and C.-L. Tang, Existence and multiplicity of nontrivial solutions for a class of fourth-order elliptic equations, Abstr. Appl. Anal. (2013), Art. ID 597193, 8 pp.

P. Magrone, D. Mugnai and R. Servadei, Multiplicity of solutions for semilinear variational inequalities via linking and (∇)-theorems, J. Differential Equations 228 (2006), no. 1, 191–225.

A. Marino and D. Mugnai, Asymptotically critical points and their multiplicity, Topol. Methods Nonlinear Anal. 19 (2002), 29–38.

A. Marino and D. Mugnai, Asymptotical multiplicity and some reversed variational inequalities, Topol. Methods Nonlinear Anal. 20 (2002), 43–62.

A. Marino and C. Saccon, Some variational theorems of mixed type and elliptic problems with jumpling nonlinearities, Ann. Scuola Norm. Sup. Pisa. Cl. Sc. 25 (1997), 661–665.

A. Marino and C. Saccon, Nabla Theorems and multiple solutions for some noncooperative elliptic systems, Topol. Methods Nonlinear Anal. 17 (2001), 213–238.

A. Marino and C. Saccon, Asymptotically critical points and multiple elastic bounce trajectories, Topol. Methods Nonlinear Anal. 30 (2007), 351–395.

A.M. Micheletti and A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal. 31 (1998), 895–908.

A.M. Micheletti and A. Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal. 34 (1998), 509–523.

A.M. Micheletti, A. Pistoia and C. Saccon, Three solutions of a fourth order elliptic problem via variational theorems of mixed type, Appl. Anal. 75 (2000), 43–59.

G. Molica Bisci, D. Mugnai and R. Servadei, On multiple solutions for nonlocal fractional problems via ∇-theorems, Differential Integral Equations 30 (2017), 641–666.

D. Mugnai, On a reversed variational inequality, Topol. Methods Nonlinear Anal. 17 (2001), 321–358.

D. Mugnai, Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA Nonlinear Differential Equations Appl. 11 (2004), no. 3, 379–391.

D. Mugnai, Four nontrivial solutions for subcritical exponential equations, Calc. Var. Partial Differential Equations 32 (2008), 481–497.

D. Mugnai and D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var. 10 (2017), 111–124.

Z.-Q. Ou and C. Li, Existence of three nontrivial solutions for a class of superlinear elliptic equations, J. Math. Anal. Appl. 390 (2012), 418–426.

R. Pei, J. Zhang, Existence of three nontrivial solutions for semilinear elliptic equations on RN , Front. Math. China 11 (2016), 723–735.

P.H. Rabinowitz, Mini-max methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. 65 (1986).

F. Wang, Multiple solutions for some nonlinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl. 331 (2007), 1001–1022.

F. Wang, Multiple solutions for some Schrödinger equations with convex and critical nonlinearities in RN , J. Math. Anal. Appl. 342 (2008), 255–276.

W. Wang, A. Zang and P. Zhao, Multiplicity of solutions for a class of fourth elliptic equations, Nonlinear Anal. 70 (2009), 4377–4385.

J. Zhang, Existence results for some fourth-order nonlinear elliptic problems, Nonlinear Anal. 45 (2001), 29–36.

J. Zhang and S. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal. 60 (2005), 221–230.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-04-22

How to Cite

1.
LI, Chun, AGARWAL, Ravi P. and OU, Zeng-Qi. Existence of three nontrivial solutions for a class of fourth-order elliptic equations. Topological Methods in Nonlinear Analysis. Online. 22 April 2018. Vol. 51, no. 2, pp. 331 - 344. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 51, No 2 (June 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop