Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

On some extensions of the class of MV-algebras
  • Home
  • /
  • On some extensions of the class of MV-algebras
  1. Home /
  2. Archives /
  3. Vol. 25 No. 1 (2016): March /
  4. Articles

On some extensions of the class of MV-algebras

Authors

  • Krystyna Mruczek-Nasieniewska Nicolaus Copernicus University in Toruń

DOI:

https://doi.org/10.12775/LLP.2015.010

Keywords

MV-algebra, variety, identity, P-compatible identity, equational base, subdirectly irreducible algebras

Abstract

In the present paper we will ask for the lattice L(MVEx) of subvarieties of the variety defined by the set Ex(MV) of all externally compatible identities valid in the variety MV of all MV-algebras. In particular, we will find all subdirectly irreducible algebras from the classes in the lattice L(MVEx) and give syntactical and semantical characterization of the class of algebras defined by P-compatible identities of MV-algebras.

Author Biography

Krystyna Mruczek-Nasieniewska, Nicolaus Copernicus University in Toruń

Department of Logic

References

Chang, C.C., “Algebraic analysis of many valued logics”, Transactions of the American Mathematical Society, 88 (1958): 467–490. DOI: 10.1090/S0002-9947-1958-0094302-9 and DOI: 10.2307/1993227

Chang, C.C., “A new proof of the completeness of Łukasiewicz axioms”, Transactions of the American Mathematical Society, 93 (1959): 74–80. DOI: 10.1090/S0002-9947-1959-0122718-1

Di Nola, A., and A. Lettieri, “Equational characterization of all varieties of MV-zlgebras”, Journal of Algebra, 221 (1999): 463–474.

Gajewska-Kurdziel, K., “On the lattice of some varieties defined by P-compatible identities”, Zeszyty Naukowe Uniwersytetu Opolskiego, Matematyka, 29 (1995): 45–47.

Grigolia, R., “Algebraic analysis of Łukasiewicz-Tarski’s n-valued logical systems”, pp. 81–92 in Selected Papers on Łukasiewicz Sentential Calcui, R. Wojcicki (ed.), Zakład Narodowy imienia Ossolińskich, Wydawnictwo Polskiej Akademii Nauk: Wrocław, Warszawa, Krakow, Gdańsk, 1977.

Hałkowska, K., “Lattice of equational theories of P-compatible varieties”, pp. 587–595 in Logic at Work. Essays dedicated to the memory of Helena Rasiowa, E. Orłowska (ed.), Springer: Heidelberg, New York, 1998.

Komori, Y., “Super-Lukasiewicz implicational logics”, Nagoya Mathematical Journal, 72 (1978): 127–133.

Komori, Y., “Super Łukasiewicz propositional logics”, Nagoya Mathematical Journal, 84 (1981): 119–133.

Łukasiewicz, J., “O logice trojwartosciowej”, Ruch filozoficzny, 5 (1920): 169–171.

Łukasiewicz, J., and A. Tarski, “Untersuchungen uber den Aussagenkalkül”, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, 23 Classe iii (1930): 30–50.

Mruczek-Nasieniewska, K., “The varieties defined by P-compatible identities of modular ortholattices”, Studia Logica 95 (2010): 21–35. DOI: 10.1007/s11225-010-9255-5

Mundici, D., “Interpretation of AF CU-algebras in Lukasiewicz sentential calculus”, J. Funct. Anal., 65 (1986): 15–63.

Płonka, J., “P-compatible identities and their applications to classical algebras”, Math. Slovaca, 40, 1 (1990): 21–30.

Płonka, J., “Subdirectly irreducible algebras in varieties defined by externally compatible identities”, Studia Scientarium Hungaria, 27 (1992): 267–271.

Rose, A., and J.B. Rosser, “Fragments of many-valued statement calculi”, Trans. Amer. Math. Soc., 87 (1958): 1–53. DOI: 10.1090/S0002-9947-1958-0094299-1 and DOI: 10.2307/1993083

Rosser, J.B., and A.R. Turquette, “Axiom schemes for m-valued propositional calculi”, The Journal of Symbolic Logic, 10, 3 (1945): 61–82. MR13718, http://projecteuclid.org/euclid.jsl/1183391454

Tarski, A., Logic, Semantic, Metamathematics, Oxford Univ. Press, 1956.

Wajsberg, M., “Aksjomatyzacja trojwartosciowego rachunku zdań”, Comptes rendue des seauces de la Societe des Sciences et des Lettres de Varsovie, Classe III, 24 (1931): 259–262.

Wajsberg, M,., “Beiträge zum Metaaussagenkalkül I”, Monatshefte für Mathematik und Physik 42 (1935): 221–242.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2015-05-04

How to Cite

1.
MRUCZEK-NASIENIEWSKA, Krystyna. On some extensions of the class of MV-algebras. Logic and Logical Philosophy. Online. 4 May 2015. Vol. 25, no. 1, pp. 35-49. [Accessed 4 July 2025]. DOI 10.12775/LLP.2015.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 25 No. 1 (2016): March

Section

Articles

Stats

Number of views and downloads: 823
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

MV-algebra, variety, identity, P-compatible identity, equational base, subdirectly irreducible algebras
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop